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Many parameters have to be tuned for any metaheuristics. Parameter tuning may 

permit a superior flexibility and robustness, but requires a careful initialization. 

Those parameters may have a large influence on the efficiency and effectiveness 

of the search. The optimal values for the parameters mainly depend on the 

problem. In order to let a project to be replicated, a standard procedure as a 

methodology is required. In this paper, a parameter tuning methodology for 

metaheuristics based on design of experiments is proposed. The proposed 

methodology comprises five phases, namely, Problem Characteristics Screening, 

Clustering, Parameter Screening, Response Surface Modeling and Optimization. 

The proposed methodology is applied to the Ant Colony System algorithm for 

solving 47 traveling salesman problem instances. For validation of the proposed 

methodology, the different alternative approaches for parameter tuning are 

compared and it is concluded that, the methodology presents better results than the 

other alternative approaches. 
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1. Introduction  

In order to perform metaheuristic algorithms, many parameters need to be tuned. These parameters 

are not only numerical values, but may also engage the use of the search components. Parameter 

tuning may allow a superior flexibility and robustness, but requires a careful initialization. Those 

parameters may have a large influence on the efficiency and effectiveness of the search. The optimal 

values for the parameters mainly depend on the problem and on the search time that the user wants to 

spend on solving the problem. Universally, optimal parameter values that one set for a specified 

metaheuristic does not exist [1]. 

There are two special strategies for parameter tuning: the online parameter initialization and the off-

line parameter initialization. In the online approach, the parameters are controlled and updated 
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dynamically or adaptively throughout the execution of the metaheuristic, whereas in the off-line 

parameter initialization, the values of different parameters are fixed before the execution of the 

metaheuristic [1]. 

Usually in off-line parameter initialization, the metaheuristic designer tune one parameter at a time, 

and it’s the best value is determined empirically. In this situation, no interaction between parameters 

is studied. This sequential optimization strategy does not assurance to find the optimal setting, even if 

an exact optimization setting is performed. To defeat this problem, experimental design is used.  

Design of Experiment (DOE) offers efficiency in terms of the quantity of data that needs to be 

gathered. This is vital when attempting to understand vast design spaces. All DOE conclusions are 

based on statistical analyses and so are supported with mathematical precision. This allays every 

concern regarding the subjective understanding of results [2].  

In this paper, the proposed methodology for parameter tuning of metaheuristics is developed on the 

basis of the method given by Ridge [2] and Ridge & Kudenko [3-6]. There are several shortcomings 

in the Ridge’s approach. This paper aims to present a methodology that proposes a simple and more 

practical approach than provided by Ridge. In the proposed methodology the unnecessary steps are 

removed and some related steps are integrated. A clustering phase to cluster the instances based on 

their actual differences is added. By using this clustering phase, parameter tuning is performed in the 

relation to problem characteristics of instances.  

The paper is organized as follows. In Section 2, the important works on off-line parameter 

initialization is reviewed. In Section 3, some basic concepts of DOE is described. In Section 4, the 

proposed methodology is presented. In Section 5, as a case study, the proposed methodology is 

applied to the ACO algorithm for solving the symmetric TSP problem. In Section 6, the methodology 

is compared with different alternative strategies to validate it. Section 7, includes conclusions and 

some suggestions for continued researches on this subject. 

 

2. Literature Review 

In this section, the most important works on off-line parameter initialization are reviewed. 

Coy et al. [7] presented a process for finding heuristic parameter settings that applied to two local 

search heuristics with 6 tuning parameters and some Vehicle Routing Problems (VRP). Theirs method 

does not investigate the relationship between instances, parameter settings and performance. 

Caserta and Rico [8] applied a Circumscribed Central Composite design to make observations and 

used a higher degree polynomial to estimate the response surface of a set of parameters. Parsons and 

Johnson [9] employed a full factorial design to screen the finest parameter settings. Breedam [10] 

attempted to find significant parameters for a Genetic Algorithm (GA) and a Simulated Annealing 

(SA) algorithm applied to the VRP using an Analysis of Variance (ANOVA) method. Seven GA and 
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eight SA parameters are examined. Park and Kim [11] developed a non-linear response surface 

method to find parameter settings for an SA algorithm. 

Adenso-Diaz and Laguna [12] applied a factorial design combined with a local search technique to 

systematically find the finest parameter values for a heuristic. Their method, CALIBRA, was 

demonstrated on six different combinatorial optimization applications. The restrictions of CALIBRA 

are that it can only tune five parameters and is unable to examine interactions between parameters. 

Fığlalı et al. [13] investigated the parameters of Ant System on different sized and randomly 

generated job-shop scheduling problems using DOE.  

Ridge [2] and Ridge & Kudenko [3-6], used a two-stage nested design to test whether problem 

characteristics have an effect on the performance of metaheuristics. Then, by a fractional factorial 

design all metaheuristic parameters are tested and those parameters that have not significant effect are 

screened out. In the next stage, a response surface model is constructed, and the parameters are 

optimized. This approach is applied to Ant Colony System (ACS) and MAX-MIN, two versions of 

Ant Colony Optimization (ACO) [14]. The disadvantages of this approach are mentioned in Section 1. 

Hutter et al. [15] and Hutter [16] proposed an automatic algorithm configuration framework in which 

the settings of discrete parameters were optimized to yield maximal performance of a target algorithm 

for a specified class of problem instances.  

Birattari et al. [17] and Birattari [18-19] applied F-races to the configuration of stochastic local search 

algorithms. The inputs of their algorithm consist of a finite set of algorithm configurations, and an 

instance distribution. It iteratively runs the target algorithm with all surviving parameter 

configurations on a number of instances sampled from instance distribution. After each iteration, first 

the non-parametric Friedman test is applied to verify whether there are significant differences between 

the configurations. If this is the case, and based on the results of Friedman post-tests, the inferior-

performing configurations are eliminated. This procedure is iterated until only one configuration 

survives or a given cutoff time is reached. A related work presented by Balaprakash et al. [20] 

iteratively performs F-races on differently defined subsets of parameter configurations.  

Srinivasan and Ramakrishnan [21] used a two level fractional factorial design for screening Inductive 

Logic Programming (ILP) system parameters and then optimized effective parameters by response 

surface methodology. 

 

3. Design of Experiment (DOE) 

In this section, some basic concepts of DOE are presented. For more detailed DOE and response 

surface methodology refer to Montgomery [22] and Myers and Montgomery [23]. 
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3.1. Definitions 

The experiment is defined as a test or series of tests in which intended changes are effected on the 

input variables of a process or system such that observe and identify the reasons for changes that may 

be observed in the output response. Statistical design of experiments denotes the process of planning 

the experiment such that suitable data that can be analyzed with statistical techniques will be gathered, 

resulting in valid and objective conclusions [22]. 

A factor is an independent variable manipulated in an experiment since it is hypothesized to influence 

one or more of the response variables. In the heuristic performance study, the factors cover both the 

heuristic tuning parameters and the most important problem characteristics. The levels are the 

different values at which a factor is set. In experimental design, a treatment is a specified combination 

of factor levels. The particular treatments are dependent on the particular experimental design and on 

the ranges over which factors are varied [24]. 

An effect is a change in the response variable as a result of a change in one or more factors. The main 

effects can be defined as follows: The main effect of a factor is the amount of the change in the 

response variable to changes in the level of the average factor over all levels of all the other factors. In 

factorial experiments, two factors are said to interact if the effect of one variable is different at 

different levels of the other variables. In general, when variables operate independently of each other, 

they do not demonstrate interaction [24]. 

 

3.2 Factorial Experimental Designs 

Full factorial design is a crossing of total levels of all factors. This is a very powerful but costly 

design. A more useful type of factorial for DOE applies k factors, each at two levels. The 2k factorial 

design represents the smallest number of runs with which k factors can be considered in a full 

factorial design. If there are more than four or five factors, it is usually not required to run all possible 

combinations of factor levels. A fractional factorial experiment is a variation of the basic factorial 

design in which only a subset of the runs is performed [22].  

 

3.3. The Two-Stage Nested Design 

In multifactor experiments, the levels of one factor (e.g., factor B) are similar but not identical to 

different levels of another factor (e.g., A). Such an arrangement is called a hierarchical or nested 

design, with the levels of factor B nested in the levels of factor A. Factor A is used in the model as the 

parent. Factor B is nested within Factor A. Factor B is set as a random factor since the unique 

instances are randomly constructed. Factor A is a fixed factor since the experimenter selects its levels 

[22]. 
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3.4. Response Surface Methodology  

Response Surface Methodology (RSM) is a group of mathematical and statistical methods, which are 

helpful for the modeling, and analysis of problems in which a response of concern is affected by a 

number of variables and the objective is to optimize this response. Designs for fitting response 

surfaces are called response surface designs. Central Composite Design (CCD) is the most known 

type of designs used for fitting these models [25-27]. There are two parameters in the design that must 

be determined: the distance of the axial runs from the design center and the number of center points 

nc. An existing factorial or resolution V and higher design from the screening stage can be augmented 

with appropriate star points to produce the CCD or FCC (Face Centered Design) designs [22]. 

 

4. The Proposed Methodology  

4.1. Overall Structure of the Proposed Methodology 

In order to let a project to be replicated, a standard procedure as a methodology for tuning 

metaheuristic parameters is required. Webster’s collegiate dictionary defines methodology as “A body 

of methods, rules, and postulate employed by a discipline” or “The analysis of the principles or 

procedures of inquiry in a particular field” [28].  

The proposed methodology is developed on the basis of the sequential experimentation method. The 

main advantage of this method is its resource efficiency.  

The DOE is used in the proposed methodology for tuning the parameter of metaheuristic algorithms. 

There are five phases in the proposed methodology. Figure 1 shows a schematic plan of phases and 

steps of the proposed methodology. In the first phase, the problem characteristics that may affect 

metaheuristic algorithm are screened. In the second phase, the instances on the basis of affecting 

problem characteristics are clustered. Clustering phase provides a set of clusters based on the most 

important problem characteristics. Parameter screening phase produces a reduced set of the most 

important tuning parameters. The response surface modeling phase, results the mathematical functions 

relating the tuning parameters to each response of interest. In the last phase, the parameters in relation 

to the importance of each response are optimized. In the following subsections, the phases of the 

proposed methodology are explained. 
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Fig. 1: A schematic plan of the proposed methodology 

 

4.2. Phase 1: Problem Characteristic Screening 

In order to tune parameters of metaheuristics to solve a set of instances, it must be noted that in 

addition to tuning parameters, some problem characteristics may affect performance of metaheuristic 

algorithms. In most research, this important element is ignored. In the proposed methodology, the 

parameters are tuned with respect to the problem characteristics. The instances are clustered on the 

basis of problem characteristics. Prior to clustering the instances, it must be tested and decided 

whether problem characteristics are effective and incorporated into clustering instances. 

The steps of Phase 1 are described as here below. 

 

Step 1.1. Identify Response Variables 

In this step, the responses to be measured are recognized. These responses must measure solution 

quality, solution time or each other concerned performance measure. 
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Step 1.2. Choose the Problem Characteristics 

In Step 1.2, following the inspection of the instances, the problem characteristics hypothesized to 

affect the interested response are chosen. 

The Steps 1.3 to 1.7 need to be repeated for each problem characteristic. 

Step 1.3. Cluster the Instances  

In this step, the instances should be clustered for each problem characteristic. 

Step 1.4. Choose the Problem Characteristic Levels 

The average of each generated cluster of instances from Step1.3 could be taken as the problem 

characteristic levels. 

Step 1.5. Determine Held-Constant Factors 

All tuning parameters and other problem characteristics should assume constant values during the 

experiment. For parameter tuning, these values may be usually found in the literature. For the problem 

characteristics, these values may be the average of central cluster or the average of a cluster with most 

members. 

Step 1.6. Choose Instances 

Three or more instances should be chosen for each problem characteristic level. The instances, which 

are most similar to the center of current problem characteristics clusters, must be selected while the 

values of other problem characteristics are held constant. 

Step 1.7. Analysis of Nested Designs 

An experimental design should be generated and then an ANOVA analysis should be applied to 

identify whether the current problem characteristics affect the performance of the metaheuristic 

algorithm.  

The most important difficulty faced in trying to experiment problem instances characteristics is that, 

instances are unique. That is to say, while several instances may have the same characteristics, it is 

hypothesized to affect the response; these instances are unique. As an example, there are an infinite 

number of potential instances that have the same characteristic of problem size. The uniqueness of 

instances will therefore cause different values of the response, although the instances have identical 

levels of the hypothesized characteristic. The experimenter’s difficulty is unraveling the effect of the 

hypothesized characteristic from the inescapable variability between unique instances. To defeat this 

problem, a two-stage nested design should be generated, where the hypothesized characteristic is the 

parent factor, and the unique instances are nested within a given level of the parent [2]. 

In this Step, the following actions should be carried out: (a) a randomized two-stage nested design is 

generated; (b) the designed treatments are run to gather required data; (c) an ANOVA analysis is 

perform; (d) the model plots are examined so that to check that model assumptions not violated; (e) 
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the responses are transformed (if required); (f) the outliers are identified and removed; (f) the 

statistical power is checked; (h) the ANOVA table is interpreted; and (i) model graphs are examined. 

 

4.3. Phase 2: Clustering 

In this phase, the instances are clustered based on all detected significant problem characteristics of 

the previous phase. According to the definition of clustering in Han and Kamber [26], it is the process 

of grouping the data into classes or clusters so that objects within a cluster have high similarity in 

comparison to one another but are very dissimilar to objects in other clusters. Dissimilarities are 

assessed with respect to the value of attributes describing the objects.  

The steps of Phase 2 are described as follows. 

Step 2.1. Cluster Instances 

Here, the instances are clustered on the basis of the problem characteristics obtained in the previous 

phase. 

Step 2.2. Choose Representative Instances 

In this step, three or more instances on the basis of the average values of each generated clusters in 

Step 2.1 must be selected.  

The Phases 3 and 4 should be carried out for every generated cluster and response separately. 

 

4.4. Phase 3: Parameter Screening 

The parameter screening phase aims to determine parameters with statistically significant effect on 

each response. As a result, the parameters with no effect on performance are identified saving 

experimental resources in subsequent modeling experiments. Parameter screening phase also provides 

the importance ranking of the parameters. The steps of Phase 3 are described as follows. 

Step 3.1. Choose the Parameters and Their Ranges 

In this step, the algorithm tuning parameters are going to be screened are chosen as well as the ranges 

over which these parameters will vary are determined. 

Step 3.2. Analysis of 2k-n Fractional Factorial Design 

In this step, in order to analyze the effects of tuning parameters a 2k-n fractional factorial design with 

resolution V or VI is generated and data is gathered. Then, an ANOVA test to determine which tuning 

parameters are affected in the performance of metaheuristic are applied. 

In this step, the following actions should be undertaken: (a) a 2k-n fractional factorial design is 

generated; (b) the designed treatments to gather required data are run; (c) the effects to be included in 

ANOVA test are selected by backward regression; (d) an ANOVA analysis is performed; (e) the 

model assumption's plots are examined; (f) responses are transformed (if required); (g) the outliers are 
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identified and removed; (h) the statistical power is checked; (i) the model fit information are 

examined. 

Step 3.3. Rank the Most Important Parameters 

The terms in the model should be ranked on the basis of their sum of square values in the ANOVA 

table. These ranks can then be studied together with the related p-values for the model terms. The 

large sum of square values corresponds to the most important model terms and the p-value showing 

they are statistically significant. 

Step 3.4. Screen Parameters 

Those parameters that are not significant statistically and having a relatively low ranking could be 

removed from the subsequent experiments, since they lack any important influence on the response. 

NB, if a parameter is important for even one response, then it should be kept in the subsequent 

experiments. 

Step 3.5. Check for Curvature 

In this phase, the screening design yields a planar relationship between the parameters and the 

response. This relationship is often a higher order than planar. Therefore, it is important to find out 

whether such curvature exists to prove the need to use a more complicated response surface and its 

related experimental design in subsequent experiments. 

Adding center points to a design allows determination of whether the response surface is not planar or 

actually contains some type of curvature. A center point is a treatment combining of all factors’ values 

at the center of their ranges. The average response value of the actual data at the center points is 

compared to the predicted value of the center point that obtained from averaging of all the factorial 

points. With the existence of the response surface curvature in the region of the design, the actual 

center point value will be either higher or lower than that estimated by the factorial design points. If 

no curvature exists, the screening experiment’s planar models should be sufficient to predict 

responses. In this case, skip Phase 4 and go to Phase 5. 

 

4.5. Phase 4: Response Surface Modeling 

A simple linear model is applied in the screening design to decide whether there is a significant 

difference between high and low levels of the factors. For this purpose, only the edges of the design 

space are of interest. By contrast, a response surface model needs a more complicated design since it 

endeavors to construct a model of the factor-problem-performance relationship over the whole design 

space. The steps of Phase 4 are described as follows. 
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Step 4.1. Augment Previous Design and Reanalyse  

Constructing a response surface needs a specific type of experimental design. The FCC design is 

suggested in the proposed methodology. Where design factors are restricted within a certain range, the 

FCC is the most fitting design. In this step, the previous constructed design is augmented with FCC 

axial points, ANOVA test is applied, and a quadratic model is generated.  

In Step 4.1, the following actions should be carried out: (a) the previous constructed design is 

augmented; (b) the new treatment with the random order to gather required data is run; (c) the effects 

to be included in the ANOVA test by stepwise regression are selected; (d) an ANOVA test is 

performed; (e) the model assumption's plots are examined; (f) the responses are transformed (if 

required); (g) the outliers are identified and removed; (h) the  model fit information is checked. 

Step 4.2. Rank the Most Important Parameters 

The terms in the model equations should be ranked on the basis of their ANOVA F values. These 

ranks can then be considered together with the p values of the model terms. 

Step 4.3. Examine Model Graphs  

The graphs of the responses for each parameter should be examined. This indicates whether 

statistically significant and highly ranked parameter practically affects the response significantly. It 

also shows the possible location of optimal response values. At this stage, the experimenter has a 

model of all responses over the total design space. These models are confirming the accuracy of the 

metaheuristic predictors. At this stage, it is possible to employ the model for tuning the metaheuristic. 

The Phase 5 should be separately done for every generated cluster. 

 

4.6. Phase 5: Optimization 

In this phase, the functions constructed for all responses from the previous phases are optimized. This 

optimization phase leads to parameter setting for each of the created clusters from Phase 2. Here, 

there are a number of possible optimization aims. One may want to attain a response with a specified 

value (target value, maximum or minimum). More typically, due to the heuristic compromise, one 

may want to optimize a number of responses. The multiple responses are given in terms of desirability 

functions. The total desirability of responses is the geometric average of the individual desirability. 

The well-known Nelder-Mead Downhill Simplex is employed to the response surface model’s 

equations with intention maximizing the desirability. The steps of Phase 5 are described as follows. 

Step 5.1. Optimize the Tuning Parameters 

A numerical optimization of desirability is performed for each of clusters created in Phase 2 by using 

the Nelder-Mead Simplex. The optimization objectives in most metaheuristics are the solution error 

and the solution run time responses minimization. These objectives can have various priorities. 
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Step 5.2. Choose the Best Solution 

Following the completion of the optimization, the maximum desirability solution is selected. It should 

be noted that there may exist a number of solutions of extremely similar desirability with the different 

factor setting. This reflects the multiobjective nature of optimization and the possibility of several 

regions of interest [2]. 

 

5. Case Study 

5.1. Introduction 

In this section, the proposed methodology is applied to ACS algorithm, a version of ACO Dorigo and 

Stützle [14], to solve the Travelling Salesman Problem (TSP). For this purpose, 47 instances with size 

less than 500 cities are chosen. The design generation and statistical calculations can be performed 

with statistical software packages such as Design-Expert, JMP and Minitab. In this paper, Design-

Expert 8 and Minitab 16 are used. SPSS Clementine 12 is applied to cluster instances. ACS algorithm 

is implemented by Java programming language. All experiments are run on a computer with Intel 

Core 2 Duo 2.53 GHz CPU and 4.00 GB RAM. 

 

5.2. Phase 1: Problem Characteristic Screening 

Step 1.1. Identify Responses Variables 

To analyze the performance of ACS, a number of measures can be utilized. In this example, the 

relative gaps of known optimum (R-Gap) and solution time (Time) are selected. 

Step 1.2. Choose the Problem Characteristics  

To solve TSPs by using the ACS algorithm, several problem characteristics may affect metaheuristic 

algorithm performance. The two problem characteristics are considered as Coefficient of Variation 

(CV) of distance between cities and the number of cities (Size). The standard deviation, expressed as 

a percentage of the mean is CV. For improved clustering, Size and CV of the problems are normalized 

as N-Size and N-CV, respectively in the range of zero and one. The instances are selected from 

TSPLIB1 and TSP2 websites. The instances information is summarized in Table 1.  

 

 

 

 

 

                                                           
1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95 
2 http://www.tsp.gatech.edu/data/index.html 
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Table 1: Problem instances information 

 
Name Size N-Size Edge 

mean 

Edge Std 

Dev. 

CV N-CV 

dj38 38 0.000 727.744 374.294 51.432 0.358 
eil51 51 0.032 32.400 15.070 46.531 0.000 
st70 70 0.079 52.260 24.390 46.671 0.010 
eil76 76 0.094 33.200 15.760 47.479 0.069 
pr76 76 0.094 7558.700 3914.080 51.783 0.384 
rat99 99 0.151 85.000 46.800 55.054 0.623 
rd100 100 0.153 555.660 262.820 47.298 0.056 
kroD100 100 0.153 1631.100 867.210 53.167 0.485 
kroA100 100 0.153 1710.700 916.030 53.547 0.513 
kroC100 100 0.153 1700.550 910.740 53.555 0.514 
kroE100 100 0.153 1732.150 933.530 53.896 0.538 
kroB100 100 0.153 1687.540 912.900 54.096 0.553 
eil101 101 0.156 33.910 16.350 48.213 0.123 
lin105 105 0.166 1177.350 670.850 56.980 0.764 
pr107 107 0.171 5405.157 3104.762 57.441 0.798 
pr124 124 0.213 5623.350 2848.450 50.654 0.301 
ch130 130 0.228 356.220 170.000 47.718 0.087 
xqf131 131 0.230 35.480 20.682 58.293 0.860 
pr136 136 0.243 6074.000 2945.430 48.493 0.143 
pr144 144 0.262 5639.510 2813.440 49.888 0.245 
ch150 150 0.277 359.300 170.000 47.131 0.044 
kroA150 150 0.277 1717.350 919.030 53.514 0.511 
kroB150 150 0.277 1711.610 922.400 53.891 0.538 
pr152 152 0.282 6914.830 3668.430 53.052 0.477 
u159 159 0.300 2827.621 1477.498 52.252 0.418 
qa194 194 0.386 479.420 263.534 54.969 0.617 
rat195 195 0.389 116.520 63.950 54.884 0.611 
kroB200 200 0.401 1664.180 892.350 53.622 0.518 
kroA200 200 0.401 1701.170 917.360 53.925 0.541 
ts225 225 0.463 7080.030 3321.760 46.917 0.028 
tsp225 225 0.463 183.580 95.210 51.863 0.390 
pr226 226 0.465 7503.010 3708.920 49.432 0.212 
xqg237 237 0.493 52.470 29.195 55.641 0.666 
gil262 262 0.554 101.920 48.250 47.341 0.059 
pr264 264 0.559 4248.446 2557.952 60.209 1.000 
a280 280 0.599 121.800 62.620 51.407 0.356 
pr299 299 0.646 2540.610 1464.160 57.630 0.811 
lin318 318 0.693 1849.040 901.900 48.776 0.164 
bcl380 380 0.847 67.330 33.946 50.415 0.284 
pbl395 395 0.884 50.310 25.767 51.209 0.342 
rd400 400 0.896 528.870 250.550 47.374 0.062 
pbk411 411 0.923 54.450 27.410 50.343 0.279 
fl417 417 0.938 1189.510 685.070 57.593 0.809 
pbn423 423 0.953 53.589 26.384 49.235 0.198 
pbm436 436 0.985 53.230 26.642 50.043 0.257 
pr439 439 0.993 4328.390 2597.690 59.878 0.976 
pcb442 442 1.000 1748.000 830.680 47.522 0.072 

 

Step 1.3. Cluster the Instances  

The TSP instances are separately clustered for each problem characteristic. In this case, the Two-Step 

algorithm [29] is used for clustering the instances. For N-Size characteristic three clusters with 

average 0.178, 0.501 and 0.935 are detected and for N-CV characteristic three clusters with average 

0.163, 0.523 and 0.86 are obtained.  
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Step 1.4. Choose the Problem Characteristics Levels 

The averages of the generated clusters from the previous step are used as the levels of each problem 

characteristic. 

Step 1.5. Determine Held-Constant Factors 

For an experiment on N-Size, N-CV is fixed at the low level (0.163) and for experiment on N-CV, N-

Size is fixed on the high level (0.935). All tuning parameters are fixed in all experiments based on the 

recommended values in the literature as in Table 2. 

 

Table 2:  Fixed values of tuning parameters 

 
Tuning parameters Fixed values 

Number of Iterations 250 

Number of Ants 10 

Percentage of Candidate List 0.15 

Alpha 1 

Beta 2 

Coefficient of Local Evaporate 0.1 

Coefficient of Global 

Evaporation 

0.1 

q0 0.9 

Coefficient of Initial Pheromone 1 

 

Step 1.6. Choose Instances 

Three instances in the vicinity of the center of clusters for each problem characteristic are chosen. The 

selected instances are listed in Table 3. 

 

Table 3: The selected instances for experiment on N-Size and N-CV 

 

For experiment on 
N-C V 

fixed value 

Levels of 

N-Size 

Selected 

instance

s 

N-Size N-CV 

N-Size 0.163 

0.178 
eil101 0.156 0.123 
pr136 0.243 0.143 
ch130 0.228 0.087 

0.501 
pr226 0.465 0.212 
gil262 0.554 0.059 
ts225 0.463 0.028 

0.935 
pbn423 0.953 0.198 
pbm436 0.985 0.257 
rd400 0.896 0.062 

For experiment on 
N-Size fixed 

value 

Levels of 

N-CV 

Selected 

instance

s 

N-Size N-CV 

N-C V 0.935 

0.163 
pbn423 0.953 0.198 
pbm436 0.985 0.257 
rd400 0.896 0.062 

0.523 
pbl395 0.884 0.342 
pbk411 0.923 0.279 
bcl380 0.847 0.284 

0.860 
fl417 0.938 0.809 
pr439 0.993 0.976 
pr299 0.646 0.811 
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Step 1.7. Analysis of Nested Design 

Two-stage nested designs are generated for effect analysis of N-Size and N-CV. In each problem, 

characteristic levels are the average of the clusters. For each level, three instances are selected. Figure 

2 and Figure 3 respectively illustrate schematic two-stage nested design for N-Size and N-CV. 

 

N-Size

0.178 0.501 0.935

eil101 pr136 ch130 pr226 gil262 ts225 pbn423 pbm436 rd400

 

Fig. 2:  Two-step nested design to experiment on N-Size 

 

N-C.V

0.163 0.523 0.86

pbn423 pbm436 rd400 pbl395 pbk411 bcl380 fl417 pr439 pr299

 

Fig. 3:  Two-step nested design to experiment on N-CV 

 

ACS algorithm is run for each treatment to collect the data in the randomized order. Then, the 

collected data are analyzed and model assumption plots are examined. For both responses, 

transformation for N-Size and N-CV are needed. Power transformation based on the recommended 

power by Box-Cox plot is performed. Several outliers are detected and replaced with the results of 

new runs. Sufficient power has been obtained with 10 replicates. With respect to ANOVA test results, 

the effects of both N-Size and N-CV problem characteristics are statistically significant for Time and 

R-Gap responses. 

Figure 4 (a, b, c, d) illustrates the effect of N-Size and N-CV on Time and R-Gap responses. As can 

be seen in the plot (a), while N-Size is increased, Time is extremely enlarged; in plot (b), when N-Size 

is increased, R-Gap is extremely enlarged; in plot (c), when N-CV is increased, Time is extremely 

declined; in plot (d), in two extreme levels, R-Gap is high and in middle level, R-Gap is extremely 

declined. 
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(a) (b) 

(c) (d) 

Fig. 4:  Main effects of problem characteristics, on the responses 

 

5.3. Phase 2: Clustering 

Step 2.1. Cluster Instances  

Figure 5 shows the instances in each the generated clusters based on N-Size and N-CV. In this case, 

the Two-Step algorithm is used for clustering the instances. For example, in Figure 5, one can see 

Cluster 1 having high value N-Size and low value N-CV, and Cluster 2 with high value for both 

problem characteristics.  
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Fig. 5:   Clustering the instances based on problem characteristics of N-Size and N-CV  

 

Table 4 summarizes the information of the created clusters. Cluster 3 has the most members and 

Cluster 2 has the least members. The averages of N-Size and N-CV for each problem characteristics 

are shown in this table. 

 

Table 4:   Information of the created clusters 

 
Clusters No of instances N-Size average N-CV average 

Cluster 

1 

11 0.800 0.208 

Cluster 

2 

4 0.784 0.899 

Cluster 

3 

22 0.248 0.544 

Cluster 

4 

10 0.199 0.081 

 

Step 2.2. Choose Representative Instances  

In this step, new instances should be chosen on the basis of the average values of each created clusters 

in Step 2.1. In this case, three instances are selected from each cluster. Table 5 presents the selected 

instances and their N-Size and N-CV values. It is attempting to select those instances nearest to the 

both N-Size and N-CV problem characteristics values.  

The next phases are performed only for Cluster 3. For other clusters, the steps and phases are the 

same. 
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Table 5:   The selected instances 

For cluster 
Average N-Size 

in Cluster 

Average N-CV 

in Cluster 

Selected 

instances 
N-Size N-CV 

Cluster 1 0.800 0.208 
bcl380 0.847 0.284 
lin318 0.693 0.164 

pbk411 0.923 0.279 

Cluster 2 0.784 0.899 
pr299 0.646 0.811 
fl417 0.938 0.809 

pr439 0.993 0.976 

Cluster 3 0.248 0.544 
kroB150 0.277 0.538 

kroA150 0.277 0.511 
pr152 0.282 0.477 

Cluster 4 0.199 0.081 
ch130 0.228 0.087 

rd100 0.153 0.056 
eil101 0.156 0.123 

 

 

5.4. Phase 3: Parameter Screening 

Step 3.1. Choose the Parameters and Their Ranges 

Table 6 shows ACS algorithm parameters and their ranges. For each parameter, low and high levels 

are determined. These ranges are extracted from the literature and pilot studies. These nine parameters 

are selected for tuning the algorithm by the proposed methodology.  

 

Table 6:  The ACS algorithm parameters and their ranges 

Tuning parameters Low level High level 

A Number of Iterations 100 400 

B Number of Ants 4 30 

C Percentage of Candidate List 0.1 0.8 

D Alpha 1 13 

E Beta 1 13 

F Coefficient of Local Evaporate 0.01 0.99 

G Coefficient of Global 

Evaporation 
0.01 0.99 

H q0 0.01 0.99 

J Coefficient of Initial Pheromone 1 1.5 

 

Step 3.2. Analysis of 2k-n Fractional Factorial Design 

A fractional factorial design with resolution VI and three blocks (each block for one of the selected 

instances) is generated. ACS algorithm is run for each treatment to collect the data in the randomized 

order. Then the collected data are analyzed and model assumption plots are examined. For both 

responses, transformation for N-Size and N-CV based on recommended power by Box-Cox plot is 

performed. The outliers are detected and replaced with the results of new runs and sufficient power 

has been reached with 10 replicates. In ANOVA analysis, for both responses, power transformation is 

needed and performed based on the recommended power by Box-Cox plot.  
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Step 3.3. Rank the Most Important Parameters 

In Tables 7 and 8, the main effective terms are ranked with respect to their sum of squares for both 

responses based on ANOVA table. Two-interaction terms are removed from these tables. For Time 

response, Beta has the highest importance. For R-Gap response, Number of Ant has the highest 

importance. For two of the responses, Coefficient of Initial Pheromone and Global Evaporation have 

the lowest importance. 

 

Table 7:  Ranked main effects for Time response in Cluster 3 

Rank Tuning parameters Sum of squares P-Value 

1 E Beta 1.405203 < 0.0001 

3 H q0 0.407872 < 0.0001 

4 B Number of Ants 0.198977 < 0.0001 

6 C Percentage of Candidate List 0.10576 < 0.0001 

8 A Number of Iterations 0.069171 < 0.0001 

10 F Coefficient of Local Evaporate 0.048048 0.0008 

13 D Alpha 0.028656 0.0095 

23 J Coefficient of Initial Pheromone 0.006782 0.2065 

43 G Coefficient of Global 

Evaporation 

9.79E-05 0.8793 
 

Table 8:  Ranked main effects for R-Gap response in Cluster 3 

Rank Tuning parameters Sum of squares P-Value 

1 B Number of Ants 3.592266067 < 0.0001 

2 C Percentage of Candidate List 3.217295487 < 0.0001 

3 D Alpha 1.912241857 < 0.0001 

4 A Number of Iterations 1.697503602 < 0.0001 

9 H q0 0.003790664 < 0.0001 

20 F Coefficient of Local Evaporate 3.66297E-05 0.0254 

23 E Beta 1.73746E-06 0.6257 

24 J Coefficient of Initial Pheromone 7.21429E-07 0.7533 

25 G Coefficient of Global 

Evaporation 

3.87085E-07 0.8179 

 

Step 3.4. Screen Parameters 

In both responses, Coefficient of Initial Pheromone, Coefficient of Global Evaporation, and Beta for 

Time are not significant, but they are added to the hierarchical model. In addition, some of the two-

interaction terms of these factors are significant.  

 

Step 3.5. Check for Curvature 

In this step, some the center points are added to the design and the model is checked for lack of fit for 

the need to quadratic model. In Cluster 3, both responses are quadratic. In the next phase, the results 

of constructing a quadratic model are presented for Cluster 3 by using response surface modeling.  

 

 

 



Mehdi Fallahi et al. / International Journal of Engineering and Technology sciences (IJETS) 2(6): 497-
521, 2014 

 

515 | P a g e  
 

5.5. Phase 4: Response Surface Modeling 

Step 4.1. Augment Previous Design and Reanalyse 

Previously constructed design is augmented with FCC axial points, applying ANOVA test and then 

fitting a quadratic model to the data.  

Step 4.2.  Rank the Most Important Parameters 

The terms in the ANOVA table must be ranked on the basis of their F values. These ranks can be 

examined together with the related p values for the model terms. For each response, ten most 

important effects on the basis of F values are ranked in Tables 9 and 10. In Table 9, for R-Gap, the 

most important interaction effect is EH (Beta*q0). In Table 10, for Time, the most important 

interaction effect is the CD (Percentage of Candidate List*Alpha). 

 

Table 9:  Ranked important effects of R-Gap response in Cluster 3 

rank Term F-Value P-Value 

1 E Beta 572.6373 < 0.0001 

2 EH Beta* q0 310.4234 < 0.0001 

3 H q0 165.6959 < 0.0001 

4 B Number of Ants 82.97454 < 0.0001 

5 F^2 (Coefficient of Local Evaporate)^2 59.85296 < 0.0001 

6 E^2 (Beta)^2 47.36844 < 0.0001 

7 DF Alpha* Coefficient of Local 

Evaporate 

42.27011 < 0.0001 

8 C Percentage of Candidate List 41.33599 < 0.0001 

9 FH Coefficient of Local Evaporate* q0 39.76342 < 0.0001 

10 A Number of Iterations 28.93076 < 0.0001 
 

Table 10:  Ranked most important effects of Time response in Cluster 3 

rank Term F-Value P-Value 

1 B Number of Ants 628080.10 < 0.0001 

2 C Percentage of Candidate List 570018.30 < 0.0001 

3 D Alpha 340205.10 < 0.0001 

4 A Number of Iterations 296963.20 < 0.0001 

5 D^2 (Alpha)^2 17930.68 < 0.0001 

6 C^2 (Percentage of Candidate List)^2 5529.97 < 0.0001 

7 B^2 (Number of Ants)^2 5450.18 < 0.0001 

8 CD Percentage of Candidate List* 

Alpha 

4247.63 < 0.0001 

9 A^2 (Number of Iterations)^2 1345.33 < 0.0001 

10 H q0 602.10 < 0.0001 

 

Step 4.3. Examine Model Graphs  

In this step, the graphs of the responses for all parameters can be studied. In this section, two samples 

of these plots are presented. Figure 6 illustrates an interaction contour plot for Time response. In this 

figure, one can observe that for reducing Time, Percentage of Candidate List and Alpha must be 

simultaneously reduced. When the Percentage of Candidate List is low, effect of Alpha is negligible. 
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Fig. 6:   The contour plot of Percentage of Candidate List* Alpha (CD) interaction for Time 

 

 

Fig. 7:  The 3D surface plot of Beta*Number of Ants (EB) interaction for R-Gap 
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In Figure 7, 3D surface plot of Beta*Number of Ants (EB) interaction for R-Gap response is 

presented. From this plot, it can be concluded to decrease R-Gap, Beta and Number of Ant must be 

simultaneously increased. 

 

5.6. Phase 5: Optimization 

Step 5.1. Optimize the Tuning Parameters 

For each of the created clusters in Phase 2, a numerical optimization of desirability is performed by 

using the Nelder-Mead Simplex. The optimization aim is to minimize the R-Gap and Time responses. 

As R-Gap is more important than Time, in desirability function, the importance of R-Gap is set at five 

and that of Time at one. 

Step 5.2. Choose the Best Solution 

In this step, the solution with the maximum desirability is selected, and the others are discarded. In 

Table 11, the best parameters for each cluster are presented. It can be seen that for important 

parameters, different values are concluded for different clusters.  

 

Table 11:  Best found parameters for each cluster 

Label Tuning parameters Cluster1 Cluster2 Cluster3 Cluster4 

A Number of Iterations 264 252 247 269 

B Number of Ants 25 28 30 30 

C Percentage of Candidate List 0.11 0.1 0.1 0.79 

D Alpha 1 1 2 1 

E Beta 12 13 13 13 

F Coefficient of Local Evaporate 0.54 0.36 0.53 0.50 

G Coefficient of Global 

Evaporation 

0.99 0.99 0.96 0.97 

H q0 0.99 0.09 0.02 0.03 

J Coefficient of Initial 

Pheromone 

1.48 1.01 1 1 

 

Here, a sample plot of the results is presented. Figure 8 shows the 3D surface of overall desirability 

for different values of Beta and Number of Ant for both responses. As can be observed for getting the 

best desirability, Beta and Number of Ant must be simultaneously increased.  
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Fig. 8:  The 3D surface of overall desirability for Beta* Number of Ants (EB) interaction 

 

6. Validation 

For validation of the proposed methodology, ACS is run for solving TSP with 4 parameter settings 

and then the averages of the ten runs are compared. It is to be noted that twelve problems used for 

parameter tuning of the four generated clusters are not included in the validation procedure. In 

addition the three problems that are used in parameter tuning without clustering are removed from 

problem set. Therefore, 32 instances are applied for validation. The different parameter settings are as 

follows. 

1) Tuned parameters by the proposed methodology. 

2) Tuned parameters by DOE without clustering for the three problems selected closer to the center 

of all problems. 

3) The parameter values are determined on the basis of the proposed parameters for ACS by Dorigo 

[14]. 

The parameters are chosen by random selection of parameters in their specific ranges. 

To compare these four parameter settings, the t-paired test is used and the differences between the 

proposed methodology and the others for two responses are compared. Table 18 summarizes the 

results of all comparisons. The null hypothesis is that there is no significant difference between two 

parameter settings, while the alternative hypothesis is that two parameter settings are not equal. 
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Table 12:  Comparisons between parameter settings  
T

h
e 
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Other parameter 

setting 
Response 

Mean 

difference 

95% CI for mean 

Difference 
P-Value 

Null 

hypothesis 

DOE without 

clustering 

R-Gap -2.349 (-2.984; -1.714) 0.000 Rejected 

Time 1.097 (-0.290; 2.484) 0.117 Not rejected 

Dorigo parameters 
R-Gap -6.272 (-7.662; -4.881) 0.000 Rejected 

Time 3.932 (2.173; 5.691) 0.000 Rejected 

Random parameter 
R-Gap -9.969 (-11.330; -8.609) 0.000 Rejected 

Time 0.593 (-0.804; 1.991) 0.393 Not rejected 

 

As can be seen in Table 12, the proposed methodology has better results for the response R-Gap in 

comparison to the other parameter settings. For the Time response, the proposed methodology is not 

significantly different with "DOE without clustering" and "Random" parameter setting. Nevertheless, 

Time response to the proposed parameters by Dorigo is preferred to the proposed methodology. 

However, with respect to a negligible difference between the proposed methodology and the Dorigo 

parameters in Time response and low importance of Time in comparison to R-Gap, the proposed 

methodology has better results in general. 

 

7. Conclusions 

In this paper, a methodology is presented for parameter tuning of the metaheuristic algorithms based 

on DOE. The proposed methodology has five phases, namely, Problem Characteristics Screening, 

Clustering, Parameter Screening, Response Surface Modeling and Optimization. In the first phase, the 

problem characteristics that may affect metaheuristic algorithm are screened. In the second phase, the 

instances are clustered based on affecting problem characteristics. Clustering phase provides a set of 

clusters based on the most important problem characteristics. Parameter screening phase produces a 

reduced set of the most important tuning parameters. The mathematical functions relating to the 

tuning parameters to every of the responses of concern are given by response surface modeling phase. 

In the last phase, the parameter values with respect to the importance of each response are optimized. 

For evaluation, the proposed methodology is applied to an ACS algorithm for solving 47 TSP 

problems. For validation of the proposed methodology, the ACS algorithm is run for solving TSP with 

three other parameter settings including tuned parameters by DOE without clustering, the proposed 

parameters by Dorigo, and random parameters. Then, the results of the proposed methodology are 

compared with those of the parameter settings. For the response R-Gap, the proposed methodology 

has better results in comparison to other parameter settings. For Time response, the proposed 

methodology has not significant difference with "DOE without clustering" and "Random" parameter 

settings. Nevertheless, Time response for the Dorigo parameters is better than the proposed 

methodology. However, with respect to a negligible difference between the results of the proposed 
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methodology and Dorigo parameters for Time response and low importance of Time in comparison to 

R-Gap, the methodology has better results in general. 
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