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The accuracy of wavefront reconstruction from discrete slope measurements in 

adaptive optics (AO) systems depends on the sampling geometry, coherent length 

of the incoming wavefront, wavefront sensor specification and accuracy of the 

reconstruction algorithm. In this paper, simulation of Gaussian beam propagation 

in a turbulent atmosphere was carried out and the slope measured by Shack- 

Hartmann wavefront sensor (SHWS) was simulated. Wavefront reconstruction 

based on iterative discrete Fourier transforms was simulated, and then 

reconstructions with Fried and Hudgin inverse filter in spatial frequency domain 

were compared with Roddier iterative Fourier reconstruction. In these algorithms, 

no spatial boundary control is required. Our simulations showed that Hudgin 

algorithm results in a bigger Strehl ratio, so its reconstruction performance is more 

accurate than Fried and Roddier algorithms. In comparison to vector matrix 

multiplication reconstruction, this algorithm is faster and more accurate. 
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1. Introduction 

A beam of light propagating in a turbulent medium is aberrated because of local changes of index of 

refraction. Adaptive optics (AO) technology has been used to remove these dynamic aberrations of 

wavefront in real time. The basic idea of dynamic correction of wavefront was first proposed by 

Babcock in 1953 [1]. Although AO was initially developed for astronomical telescopes, it is now being 

used in several areas such as vision science, free space optical communications, optical microscopy , 

etc [2-4]. The three main components of an AO system are the wavefront sensor, which detects 

wavefront distortions; the correction component such as a deformable mirror (DM), which removes 

aberration of wavefront, and finally the control unit, which generates control signals of DM based on 

wavefront sensor measurements. A common wavefront sensor used in AO systems is the Shack-
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Hartman wavefront sensor (SHWS) because of its simple optical structure and robustness. This sensor 

consists of an array of micro lenses placed in front of a detector array like a CCD. It can determine the 

local slope of input wavefront by measuring spots movements in the focal plane of each lenslet 

subaperture. The local slopes of wavefront are related to the wavefront phase by means of a set of linear 

equations, and the control unit generates proper signals for deformable mirror actuators by solving these 

equations. Vector matrix multiplication method (VMM) [5] and iterative Fourier transforms method 

(IFT) [6] are two methods used to solve these equations. The VMM method, in comparison to IFT, has 

many computation burdens, so it is not suitable for systems with a large number of mirror actuators and 

lenslets. If time interval between sensing and correction of wavefront is greater than the rate of 

turbulence’s change, correction process adds more aberrations to the wavefront. The computation time 

of VMM is O(n2) while that of IFT is O(n ln n) in which n is the degree of freedom of system i.e. 

number of actuators [7]. Iterative algorithms are widely used in image processing and other aspects of 

science and technology because of its accuracy and speed [8]. Iterative algorithm is used in this article. 

Using Fourier transforms to determine the wavefront phase from local slopes of wavefront was first 

proposed by Frischlad and Koliopoulus [6]. Since almost all telescopes have a circular aperture with 

central obscuration and Fourier transforms are defined on a rectangular grid point, using this method in 

a circular area generates a wavefront with many errors in aperture’s boundary. Poyneer et al. used 

boundary and extension method to solve this problem in circular and annular apertures [9]. Before these 

methods, Roddier solved this problem based on Gerchberg–Saxton iteration method, which can be 

applied for each arbitrary aperture shape [10, 11].  

In this paper, we study the wavefront reconstruction of an aberrated wavefront whose measurement is 

in a circular aperture based on IFT method. We have used two different sets of equations in IFT method 

and have compared the resulting wavefronts. One set is called Roddier – Gerchberg (RG), which is 

based on Roddier equation. The other set of equations is based on the sampling geometries of the 

aperture, i.e. Fried or Hudgin geometries; so, they are called Fried –Gerchberg (FG) and Hudgin – 

Gerchberg (HG) methods. IFT method and these equations will be explained in Section 2. In section 3 

simulation of propagated wavefront in a turbulent atmosphere will be explained. SHWS and 

reconstruction process are also discussed in this section, and then the final results will be presented. 

2. Wavefront reconstruction algorithm 

In reconstruction algorithms, input function is the local slopes of wavefront measured by SHWS. In IFT 

algorithms, Fourier transforms of these slopes show their spectrum in the spatial frequency domain. 

Wavefront is then calculated in the frequency domain by using one of the equations which will be 

described later. By applying inverse Fourier transform, the wavefront will result in a spatial domain. 

The defined error function tells us whether the reconstructed wavefront is acceptable or not. Since the 
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available data are the slopes measured by SHWS in the actual AO system, the error function is defined 

based on the slopes: 

error = [
∑ ((ξi,j− ξ̂i,j)

2
+(ηi,j− η̂i,j)

2
)i,j

∑ ((ξ̂i,j)
2
+(η̂i,j)

2
)i,j

]

1/2

         (1) 

Where ξi,j =
∂S

∂x
|
xi,yj

and ηi,j =
∂S

∂y
|
xi,yj

are slopes of wavefront obtained from reconstructed wavefronts 

and ξ̂i,j and η̂i,j are slopes measured by SHWS in each (xj, yj) point. If the reconstructed wavefront with 

a criterion selected based on the problem conditions is not acceptable, an iterative manner is used and 

the calculated slopes from reconstructed wavefront are replaced by the measured ones, and the 

algorithm is repeated. Since the output of SHWS is usually in a circular or annular area and Fourier 

Transforms are defined on a rectangular area, the replacement process solely involves the slopes in a 

circular area, and the slope outside this area will be unchanged. Figure 1 shows these two areas. The 

method of calculating local slopes of wavefront depends on the geometry of reconstruction, which will 

be explained in section 2.2. Figure 2 shows flow chart of this algorithm. 

 

Fig. 1: The circular area shows measured slopes by SHWS and the rectangular area is an area defined for FFT 

Another metric performance is defined to evaluate the ability of a wavefront reconstruction process. It 

is Strehl ratio for the two wavefronts of interest; U1 and U2, where U1 is the wavefront to be measured, 

and U2 is a reconstructed wavefront. The Strehl ratio is formed on a set of points: 

SR =  
|∑ U1;i,jU2;i,j

∗
i,j |

2

[∑ U1;i,jU1;i,j
∗

i,j ][∑ U2;i,jU2;i,j
∗

i,j ]
         (2) 

Replacement of slopes is in a circular area enclosed by a rectangle since slopes measurements are in a 

circular aperture, and calculations take place on a rectangular array too.  
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Fig. 2: Flow chart of iterative algorithm 

2.1. RG algorithm  

Consider wavefront S(x, y) in Cartesian coordinate. It can be expanded as: 

S(x, y) = ∬a(u, v)exp [j2π(ux + vy)]dudv       (3) 

Where (u, v) are spatial frequencies and a(u, v)  is the expansion coefficient of S(x, y) in the spatial 

frequency domain. Derivation of equation (2) with respect to x and y gives: 

ξ(x, y) = j2π∬ua(u, v)exp [j2π(ux + vy)] dudv        (4) 

η(x, y) = j2π∬va(u, v)exp [j2π(ux + vy)] dudv       (5) 

Since the derivative of a Fourier series is a Fourier series, we have: 

ξ(x, y) = ∬bu(u, v)exp [j2π(ux + vy)] dudv       (6) 

η(x, y) = ∬bv(u, v)exp [j2π(ux + vy)] dudv       (7) 

Where bu(u, v)  and bv(u, v)  are coefficients of Fourier transform of S(x, y)  slopes. Comparing 

equation (4) with (6) and equation (5) with (7) results in: 

a(u, v) = −j
ubu(u,v)+vbv(u,v)

2π(u2+v2)
         (8) 
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According to equation (8), starting from wavefront slopes i.e. ξ(x, y) and η(x, y), expansion coefficients 

of S(x, y) can be calculated and then the S(x, y) in the space domain can be achieved. Equation (8) is 

valid for an unbounded function; so, for error reduction at boundaries, an iterative method should be 

used to have a continuous slope on both sides of boundaries. 

 

2.2. Phase and slop relation based on sampling geometry (FG and HG algorithms) 

The local slopes of wavefront are measured in discrete positions by SHWS, and the control unit sends 

command signals to the mirror actuators based on these slopes. Fried and Hudgin geometries are two 

common geometries that relate the measured wavefront slopes to phase positions [12]. In Fried 

geometry, a set of points corresponding to the corners of the SH subaperture shows phase positions or 

mirror actuators. In Hudgin geometry, the set points for wavefront estimation are placed in the middle 

point of subaperture lines.   

 In Fried geometry, the average of two adjacent phase points is taken as a slope: 

ξi,j
(F)
= [(Si+1,j + Si+1,j+1) − (Si,j + Si,j+1)] 2h⁄       (9) 

ηi,j
(F) = [(Si,j+1 + Si+1,j+1) − (Si,j + Si+1,j)] 2h⁄       (10) 

In Hudgin geometry, the difference between the adjacent phase points is taken as a slope: 

ξi,j
(H) = [Si+1,j − Si,j] h⁄           (11) 

ηi,j
(H) = [Si,j+1 − Si,j] h⁄           (12) 

Where ξi,j and ηi,j are slopes in (i, j) points, Si,j is phase in this point and h is the separation between 

adjacent points. Now, according to the geometry of reconstruction and by using these equations, 

wavefront slope can be calculated in the iterative algorithm.  

Using discrete Fourier transform of phase-slope relations and the shift property of Fourier transform 

results in different equations that can be used in IFT. In Fried geometry, we have [9]: 

S̃k,l =

{
  
 

  
 

0                                           k, l = 0 , k, l = N/2

{
[exp(

−j2πk

N
) − 1] [exp (

j2πl

N
) + 1] ξ̃k,l

(F) +

[exp(
−j2πl

N
) − 1] [exp (

j2πk

N
) + 1] η̃k,l

(F)
}

× [8 (sin2 (
πk

N
) cos2 (

πl

N
) + sin2 (

πl

N
)  cos2 (

πk

N
))]

−1

 

     (13) 
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Where ξ̃k,l
(F)

 and η̃k,l
(F)

 are Fourier transforms of ξi,j
(F)

and ηi,j
(F)

 in (k,l) points, respectively, S̃k,l is Fourier 

transform of phase and N  is the number of sampling points or number of subapertures.  

A similar approach for Hudgin geometry results in [9]: 

S̃k,l =

{
 
 

 
 0                                                                           k, l = 0 

{[exp (
−j2πk

N
) − 1] ξ̃k,l

(H)
+ [exp (

−j2πl

N
) − 1] η̃k,l

(H)
}

× [4 (sin2 (
πk

N
) + sin2 (

πl

N
))]

−1
   else where

        (14) 

Where ξ̃k,l
(H)

 and η̃k,l
(H)

 are Fourier transforms of ξk,l
(H)

 and ηk,l
(H)

in (k,l) points, respectively. Inverse Fourier 

transform of equations (13) and (14) result in the estimated wavefront.  

Now, we have two sets of equations that we can use in IFT to reconstruct the wavefront. The first one, 

equation (8), is the result of wavefront expansion based on sinusoidal functions known as Roddier-

Gerchberg (RG). The second set, equations (13) and (14), is the result of iterative Fourier transforms of 

slope-phase relations. Equation (13) is named Fried-Gerchberg (FG) and equation (14) refers to Hudgin-

Gerchberg (HG) algorithms.  

3. Simulation results and discussion 

Numerical simulations are used to evaluate the performance of each set of equations in IFT algorithm. 

In these simulations, propagation, detection and reconstruction of Gaussian beam are considered. An 

optical beam with wavelength λ = 0.5 µm is propagated over a distance of 10 Km through a turbulent 

atmosphere. Turbulent atmosphere is simulated with 20 equally spaced random phase screens along the 

propagation path. Each screen represents a 0.5 Km thick turbulent atmosphere. All the phase screens 

consist of an N×N array. To avoid the aliasing problem caused by using a Fast Fourier Transform (FFT), 

simulation’s parameters are chosen so that the relation N≥2λz/Δ2 is satisfied; where N is the number of 

sampling points along one direction of screen, z is the propagation distance and Δ is the sampling step 

[13]. In our simulation, N is equal to 1024 and Δ is set to 1 mm.  

Random phase screens are generated by a sub-harmonic method [14] based on Von-Karman statistics, 

whose outer scale is equal to 100m. Strength of the turbulence is controlled by the structure constant of 

index of refraction, Cn
2. Turbulent atmosphere simulated with 10 different Cn

2  ranges from 1.2×10-17 

m-2/3 to 1×10-16 m-2/3. For each simulation, Cn
2 is set to a constant value along the entire propagation 

path. The Rytove variance σχR
2  and Fried parameter, r0, for a plane wave propagated along such path 

are calculated by means of the following equations [15]: 
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σχR
2 = 0.307(

2π

λ
)
7/6

L11/6Cn
2         (15) 

r0 = 0.331(
λ2

Cn
2L
)
3/5

          (16) 

 

Table 1 shows Cn
2, r0 and σχR

2  values for our simulations. Based on this table, the simulated atmosphere 

is in a weak turbulence regime.  

Table. 1: Parameters used for simulating atmosphere with different turbulence strength. The last 

column shows SHWS subaperture diameter to r0 ratios 

Cn2 (× 10-16 

m-2/3) 

r0 σχR
2  d/r0 

Lenslet number = 16 Lenslet number = 32 Lenslet number = 64 

1 0.145 0.05 0.43 0.22 0.11 

2.22 0.089 0.11 0.70 0.35 0.17 

3.44 0.069 0.18 0.91 0.45 0.23 

4.67 0.057 0.24 1.09 0.54 0.27 

5.8 0.050 0.30 1.25 0.63 0.31 

7.11 0.044 .036 1.40 0.70 0.35 

8.33 0.041 0.43 1.54 0.77 0.39 

9.56 0.037 0.49 1.67 0.84 0.42 

10.78 0.035 0.55 1.80 0.90 0.45 

12.00 0.033 0.62 1.92 0.96 0.48 

 

Simulation of wavefront sensing is performed with three different SHWS with 16, 32 and 64 lenslets 

along the direction of telescope diameter. Array size of each subaperture for these SHWS is equal to 

64×64, 32×32 and 16×16, respectively; and their f-number is equal to 24. Lenslet diameter ratio to Fried 

parameter for each SHWS is shown in Table 1. As can be seen, for Cn
2 greater than 3.44×10-16 m-2/3 , 

d/r0 ratio for 16 sub apertures SHWS is greater than 1, then wavefront sensing with this SHWS in these 

turbulence strengths results in wrong wavefront sensing.  
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Fig. 3: Error of FG (circle), HG (stars) and RG (square) algorithms for the reconstruction of aberrated wavefront 

when it propagates in an atmosphere whose Cn
2 is equal to 1×10-16 cm-2/3 

The first part of our simulation includes a comparison of performance of equations (8), (13) and (14) 

for wavefront reconstruction on IFT algorithm. Error criteria of FG, HG and RG algorithms for 

propagated beam in atmosphere with turbulence strengths, Cn2 , equals 1×10-16 cm-2/3 , as shown in 

Figure 3. In this figure, the horizontal axis shows iteration number and the vertical axis shows root mean 

square of slops difference relative to the square of reconstructed wavefront slopes. Error criteria for 

other Cn2 values show a similar behaviour. As can be seen, FG algorithm has minimum errors, and 

errors of RG algorithm in a few initial iterations are reduced but they ultimately increase with an 

increase in the number of iterations. This figure shows FG and HG algorithms reconstruct the wavefront 

better than RG. An error criterion used to select the best iteration as a reconstructed wavefront is based 

on the slope difference between the desired and reconstructed wavefront. But the best metric for 

comparing these algorithms is Strehl Ratio (SR) that is shown in Figure 4. Strehl Ratio changes with 

increasing Fried parameter for different SHWS, which are characterized with their lenslet numbers, as 

shown in these figures. As expected, wavefronts reconstructed with RG algorithm show minimum SR 

and reconstructed wavefronts with HG show the best performance (bigger SR). This result is contrary 

to that of Figure 3 where FG algorithm has a better performance. It must be noticed that the error 

criterion in IFT algorithm based on the slope difference is used to stop the iteration process of 

reconstruction, but an AO system performance is evaluated based on SR. So, we can conclude that the 

HG algorithm has a better performance for wavefront reconstruction in a weak turbulence atmosphere.  
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As mentioned earlier, for SHWS with 16 lenslets along aperture diameter, d/r0 ratio is smaller than 1, 

then wavefront sampling with this SHWS results in a wrong answer. Because of that, SR values of 

reconstructed wavefronts that sampled with this SHWS are smaller than others. 

 

Fig. 4: Strehl ratio variation with r0 for IFT reconstruction.  In these figures ( blue  ○ ) shows Fried algorithm, 

(red * ) shows Hudgin algorithm and (black  □ ) shows Roddier algorithm. SHWS are characterized with their 

lenslet numbers in the direction of aperture diameter. 

 

Comparison between VMM and IFT is the second part of our simulations. In VMM reconstruction, 

Fried and Hudgin geometries are used. Calculation of least square reconstruction was made practical 

by using the sparse matrix technique and Cholesky factorization. Performance metric for this 

comparison is SR, and Figure 5 shows SR variation with Fried parameter for all SHWS that are 

characterized with their lenslet numbers. Comparison between SR values in Figure 4 and Figure 5 shows 

that the IFT performance for wavefront reconstruction is better than VMM reconstruction in almost all 

turbulence strengths for weak turbulences.  
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Fig. 5: Strehl ratio variation with r0 for VMM reconstruction. In these figures ( blue ○ ) shows Fried algorithm, ( 

red * ) shows Hudgin algorithm and ( black □ ) shows Roddier algorithm. SHWS are characterized with their 

lenslet numbers in the direction of aperture diameter. 

 

4. Conclusion 

In this article, different IFT algorithms were used to reconstruct an aberrated wavefront in an AO 

system. In these algorithms, we used local slopes of wavefront that were measured by a SHWS as an 

input, and root square difference between measured slopes as an error criterion to terminate the iteration 

process. Another error criterion used was Strehl ratio. Hudgin and Fried geometry was used to calculate 

wavefront slopes in each iteration of algorithm, and three equations that relate wavefront phase in spatial 

space to frequency space were investigated. The first equation was Roddier and the other two were 

based on Fried and Hudgin geometry. Our simulations showed that the Hudgin algorithm reconstructs 

wavefront more accurately than algorithms based on Fried geometry and Roddier algorithm. 

Comparison between IFT and VMM algorithms show that the reconstruction wavefront with Hudgin 

geometry in IFT process has a better Strehl ratio.  
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