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Air-blast atomizers provide excellent atomization over a large range of fuel flow rates 

and very good penetration. In this study we consider an annular liquid sheet emanating 

from an air-blast atomizer subjected to inner and outer swirling air streams. A temporal 

stability analysis is carried out to model the atomization of a swirling viscous annular 

liquid sheet subject to axi-symmetric disturbances and inviscid swirling air streams. 

Numerical solutions to the dispersion equation under a wide range of flow conditions are 

carried out to investigate the effects of the liquid-gas swirling orientation on the 

maximum growth rate and its corresponding unstable wave number.   
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1. Introduction 

 

When a liquid is injected under pressure from a 

nozzle into a surrounding gas medium, a 

continuous liquid jet is formed. Because of its 

inherent instability or its inabi1ity to sustain itself 

against even small perturbations, to which an- 

physical system is subject, the liquid jet develops 

unstable waves, which amplify downstream, and 

eventually it disintegrates into a train of droplets. 

The process of the liquid jet breakup consists of 

two fundamental steps. The first step is that the jet 

breaks up into ligaments. The second is that the 

ligaments further disintegrate into fine droplets. 

This process of liquid jet breakup into ligaments 

and then ligaments into droplets of fine sizes is 

often referred to as liquid atomization. The nozzle 

from which the Iiquid emanates is called 

atomizer, and the cluster of fine droplets so 

produced is usually termed as a spray. Liquid 

atomization is of importance in numerous 

applications such as fuel injection    
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in engines, gas turbine engines, industrial 

furnaces, agricultural sprays [1]. The stability of 

liquid jets and sheets has received much attention 

since the classical studies of Rayleigh and Squire. 

For authoritative reviews of liquid sheet and jet 

instability and breakup, readers are referred to a 

recent monograph by Lin [2] and reviews by 

Sirignano and Mehring [3]. Two limiting cases of 

the configuration considered here are available in 

the literature, viz., the swirling annular liquid 

sheet without air swirl considered by Panchagnula 

et al. [4] and the purely axially moving liquid 

sheet subjected to inner and outer air swirl 

considered by Liao et al. [5]. Panchagnula et al. 

[4] showed that liquid swirl reduces the wave 

number and the growth rate of the most-unstable 

disturbance at low swirl Weber number. 

However, at higher swirl, increasing the liquid 

swirl Weber number increases the range of 

unstable axial and circumferential modes and 

increases their growth rates. Liao et al. [5] 

compared the effectiveness of the inner and the 

outer air swirl and showed that a combination of 

the inner and outer air swirl is more effective than 

a single air swirl in enhancing the instability of 

the liquid sheet and in improving atomization, 

whereas the inner air swirl is more effective than 

the outer air swirl. Mehring and Sirignano [6] 

showed that liquid swirl can enhance wave 

growth of the unstable mode resulting in shorter 

breakup lengths using a non-linear analysis of a 

swirling, annular, axisymmetric liquid sheet in a 

void. The shortest breakup lengths were obtained 

with both the inner and the outer air stream co-

rotating with the liquid. Chen et al. (2003) 

conducted a linear stability analysis for an annular 

viscous liquid jet subject to three dimensional 

disturbances moving in an inviscid, motionless 

gas phase [7]. Ibrahim et al. (2005) have 

conducted a temporal linear instability analysis of 

an inviscid, annular liquid sheet in an axially 

moving, inviscid gas medium [8]. Twin-fluid 

atomization is of significant fundamental and 

practical importance because of its extensive 

applications in pharmaceutical and chemical 

processing. Spray drying operations, power 

generation and propulsion systems. The formation 

and characteristics of sprays are strongly affected 

by the breakup process of the annular liquid jets. 

Therefore, the development and growth of 

unstable waves on the annular liquid jet Subject to 

inner and/or outer gas streams are investigated in 

this thesis theoretically by using the linear 

instability analysis. 

2. Formulation for Linear Stability Analysis 

 

2.1. Model Assumptions  

The stability model considers a swirling viscous 

annular liquid sheet subject swirling airstreams as 

shown in Fig. 1. Gas phases are assumed to be 

inviscid and incompressible. The basic flow 

velocities for liquid, inner gas and outer gas are 

assumed to be (Ul ,0, Al r) , (Ui ,0,Ωr) , (Uo ,0, Ao 

r) respectively. Inner gas swirl profile is assumed 

to be solid body rotation and outer gas swirl 

profile is of free vortex type. 
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Fig. 1: Annular swirling viscous liquid sheet 

subject to swirling airstreams 

Sheet instability occurs due to the growth of 

unstable waves at the liquid gas interface. The 

growth rates of these unstable waves are governed 

by fluid properties, nozzle geometry and 

competition of forces acting on the interface 

including viscous, pressure, inertial, surface 

tension, and centrifugal force. There exists a 

dominant or most unstable wave number 

corresponding to the maximum growth rate. The 

maximum growth rate and the most unstable wave 

number can be related to the breakup length and 

the mean droplet diameter, respectively. A 

temporal linear instability analysis is conducted to 

determine the maximum growth rate and the most 

unstable wave number. 

2.2. Linearized Disturbance Equations 

The governing equations for viscous fluid flows 

in cylindrical coordinate system are : 

Continuity: 
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(4) 

 

In order to obtain the linearized disturbance 

equations, let 

 

pPpwWWvVuUU  ,,,  (5) 

 

Where, the over bar represents the mean flow 

quantities and u, v, w and p  indicates 

disturbance. The disturbances are assumed to be 

of the form, 
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Where ^ indicates the disturbance amplitude 

which is a function of r only. For linear temporal 

instability analysis, wave numbers k and n are 

real, while the frequency ω is complex. The 

maximum value of imaginary ω represents the 

maximum growth rate and the corresponding 
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value of k represents the most unstable wave 

number. The displacement disturbance at the 

inner and outer interfaces are given by the 

following equations, 

 

     itnkxi

ii etx  ˆ,,  (7) 

   tnkxi

oo etx   ˆ,,  (8) 

 

Hereφindicates the phase difference between the 

displacement at the inner and the outer interface. 

For plane liquid sheets,φeither zero or π. A zero 

phase difference represents the sinuous mode 

while a phase difference of π represents the 

varicose mode. Substituting Eq. (5) into Eq. (1), 

(2), (3) and (4), subtracting the mean flow 

equations and neglecting the second order terms, 

we get the linearized equation for velocity and 

pressure disturbances as: 

Continuity: 
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Momentum: 
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(12) 

 

Similarly the linearized disturbance equations for 

gas flow in component form are given as: 

Continuity: 
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Momentum: 
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Where j =i,o and Wi =Ωr , Wo =Ao r 

Inorder to determine the effect of the various 

forces, properties of fluids and other geometric 

parameters, the following non-dimensional 

parameters are introduced: 
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Weber numbers for the fluid, the gas inside and 

outside were defined in modes the axial velocity 

and rotational. ,, , , , Rei oh g k   

Respectively are the radius ratio, the density ratio 

of gas to liquid, dimensionless wave number, 

dimensionless growth rate, Reynolds number of 

flow. 

2.3. Boundary Conditions 

The following boundary conditions are necessary 

to solve the linearized disturbance equations. 

Kinematic Boundary conditions: 

Liquid: 
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Due to the inviscid assumption for the gas streams 

in the axial and azimuthal directions, viscous 

stress at the liquid-gas interface is zero. This is 

expressed as: 
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The dynamic boundary conditions require that the 

forces in the normal direction be balanced. These 

include pressure, surface tension, inertial, 

centrifugal and viscous force. Mathematically 

they are expressed as: 
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2.4. Pressure disturbance inside the liquid sheet 

Here the subscripts 1 and 2 represent the inviscid 

and the viscous parts of the velocity perturbations. 

Now equations for the two parts can be written as: 

Inviscid: 
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Viscous: 
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Terms of the fluid velocity can be written as 

follows: 
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Substituting (32) in (25), we have: 
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The above equation is a Bessel equation which 

has a solution of the form: 
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By applying this method over Equations of (28) to 

(30), The velocity terms are obtained as follows: 
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Using the boundary conditions (Eq. (17), (18) and 

(21)) the constants C1, C2 to C6 are determined 

and by substituting them inside Equation (36), the 

pressure disturbance inside the liquid sheet can be 

expressed as, 
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The coefficients are given by the following 

equations, 
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2.5. Pressure disturbance in inner and outer gas 

phase 

Linear Continuity and momentum equations and 

dimensionless for gas phase can be written as 

follows: 
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dr
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











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The pressure disturbance inside the inner and 

outer gas are calculated such the pressure 

disturbance inside the liquid sheet that by 

refraining the related operations. 

Pressure disturbance in inner gas: 
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(49) 

 

Pressure disturbance in outer gas: 
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(50) 

 

Where,  nI v ,  nK v

 

are the nth order modified 

Bessel Function of first and second kind 

respectively. The Nonlinear dimensionless 

dispersion equation is obtained by substituting the 

pressure disturbances inside Equations (23) and 

(24) and with Remove the common factors. The 

Final Dispersion Equation was solved numerically 

using the secant method. 

 

, , , , ,Re, , ,
0

, , , ,

i o l i

o s si so

k s g g We We
f

We We We We h

 
  

 
 (51) 

 

Unlike the inviscid case, the final dispersion 

equation does not have a closed form solution and 

is solved numerically using MathematicaTM. The 

Secant method is used where two starting 

complex guess values are required to determine 

the roots of the dimensionless dispersion 

equation. Results from the inviscid case are taken 

as starting guess values. By varying the value of 

k , we solve for the root with the maximum 

imaginary part that represents the maximum 

growth rate of disturbance corresponding to the 

most unstable wave number and the primary 

breakup of spray is discussed. 

2.6. Breakup Mechanism 

If surface disturbance at breakup time reach to b  

, breakup time ( ), Is calculated from the 

following equation [9]:   

 

(52) 0
0

1
exp( ) ln( )b

b


   

 
   

 

 

In the above equation,   is the maximum wave 

growth rate that is calculated by solving the final 

distribution equation and 

0

ln( ) 12b


  is placed 

the experimental results Dombrowski and Hopper 

[10]. Also primary breakup lengths of layer will 

be as follows:  

 

(53) 
1 1

1
0

12
ln( )b

b

V V
L V




  
   

 

In the above equation, 1V is the absolute velocity 

of the fluid and bL  is the primary breakup length 

of fluid layer. Because in equation (51) 
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dimensionless wave growth rate to be achieved, 

so with the following procedure will become:   

 

(54) 
1

1

12b b
b

b

R RV
L

V R

 
 


     

 

In the above equation, bR  is Outer radius of the 

liquid annular layer and   is the dimensionless 

wave growth rate. Also ligaments diameter that 

formed at the point of break Caused of the jet 

break or layers is obtained from the following 

equation [9]: 

 

(55) 
16 s

L

h
d

k
 

 

In the previous equation, Ld
 
is ligament diameter 

and k  is Wave number corresponding to the 

maximum wave growth rate and sh  is half of the 

layer thickness that is obtained from the following 

equations:  

 

(56) 

( )
;
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b a
b s
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R Rk
k kR k h

R


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Consequently, ligament diameter is calculated as 

follows: 

 

(57) 
16 s b

L

h R
d

k
 

 

Droplet diameter Caused of the viscous fluid 

ligament break can be obtained as follows [9]: 

 

(58) 
1

61.88 (1 3 )D Ld d Oh  

 

In the above equation, Oh is Viscosity to liquid 

surface tension ratios and is obtained from the 

following equation: 

 

(59) 1

2( )

l

l L

Oh

d



 

 

 

Solve the equation (51) is Introduction to achieve 

the primary breakup lengths relationship 

(equation (54)). To reach the Ligament and 

droplet diameter should be used Wave number 

corresponding to the maximum wave growth rate 

from equation (51). From equation (54) it can be 

concluded that with increases the maximum wave 

growth rate is reduced the primary breakup 

lengths. From equation (57) with increases the 

Wave number corresponding to the wave growth 

rate is reduced the ligament diameter and also is 

reduced the droplet diameter (From equation 

(58)). 

3. Result and Discussion 

3.1. Effect of Liquid swirl velocity 

Figure 2 shows the damping effect of liquid 

viscosity. At a constant Weber number, change in 

Re corresponds to a change in liquid viscosity. 

Higher values of Reynolds number correspond to 

lower viscosity. Hence the maximum growth rate 

increases with Reynolds number eventually 

reaching the growth rate for an inviscid case for 

Re=1000. This would imply that higher liquid 

growth rate would lead to shorter breakup lengths 

and smaller droplets. The maximum growth rate 

increases, Primary break up length, ligament 

diameter and droplet diameter decreases and 

improves combustion and reduces emissions and 

fuel consumption. So Fig. 3 has a shorter Primary 

break up length compared to Fig. 2. Also ligament 

diameter and droplet diameter of Fig. 3 is shorter 

than Fig. 2. In general, with increasing the wave 
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growth rate, Primary break up lengths and 

ligament diameter is reduced and thus the droplet 

diameter decreases. Also liquid viscosity has a 

negative effect on the Primary break up lengths 

and it Causes to become the increasing the 

Primary break up length on the other hand 

Viscosity increase causes to become increasing 

the Primary break up length. Also Viscosity 

increase causes to become increasing the ligament 

diameter and droplet diameter. The variations of 

growth rate with wave number for a liquid sheet 

with both axial and swirl velocity components are 

shown in Figs.3. The axial Weber number and the 

swirl Weber number are taken as equal. From 

Fig.3 it can be observed that the maximum growth 

rate and the most unstable wave number are 

significantly higher compared to their no swirl 

counterpart (Figs.2, respectively). This indicates 

that liquid swirl promotes instability at high 

Weber numbers. The figures also show that the 

damping effect of viscosity is stronger for a 

swirling sheet compared to that for a non-swirling 

sheet. At very high viscosity (Re = 10), the 

maximum growth rate for the swirling case are 

lower than that for a non-swirling case. The effect 

of liquid swirl (liquid swirl Weber numbers from 

0 to 75) on the maximum growth rate and the 

most unstable axial wave number are shown in 

fig. 7. It is observed that liquid swirl has a dual 

effect on sheet instability. At low values of liquid 

swirl Weber numbers (0 to about 20), a stabilizing 

effect is seen. At low values of swirl, at the inner 

interface, the centrifugal forces due to liquid swirl 

tend to push the perturbed sheet back to its 

undisturbed state. As such, at low liquid swirl 

Weber number, liquid swirl tends to have a 

stabilizing effect on the liquid sheet. The 

centrifugal force due to liquid swirl at the outer 

interface tends to push a perturbed interface 

further outward and exhibits a destabilizing effect. 

The disturbance growth rate increases with 

increasing liquid swirl Weber number at high 

liquid swirl. 
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Fig. 2: Dispersion diagram at Wel=1000, gi=go=0.00123, h=0.95 

 

 
Fig. 3: Dispersion diagram at Wel= Wes =1000, gi=go=0.00123, h=0.95 
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Fig. 3: The Effect of Liquid Viscosity on the primary break up of spray at Wel=Wes= 1000, gi=go=0.00123, 

h=0.95  

 

 
Fig. 4: The Effect of Liquid Viscosity on Ligament diameter at Wel=Wes= 1000, gi=go=0.00123 , h=0.95 
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Fig. 5: The Effect of Liquid Viscosity on Droplet diameter at Wel=Wes= 1000, gi=go=0.00123 , h=0.95 

 

 
Fig. 7: Liquid Swirl Weber number Vs Growth Rate at Wel=1000, gi=go=0.00123, h=0.95 

 

 

 



Bahram Jalili et al. / International Journal of Material Science Innovations (IJMSI) 3 (3): 97-113, 
2015 

109 | P a g e  
 

3.2. Effect of air swirl 

Figure 8 present the effect of axial gas velocities 

in the disintegration of swirling, annular liquid 

sheets. The combination of inner and outer air is 

more effective in destabilizing swirling liquid 

sheets than liquid sheet with both axial and swirl 

velocity (Fig. 3). The aerodynamic interaction at 

the liquid-gas interface is enhanced when both 

inner and outer air are present, thus increasing the 

instability. Swirling liquid sheets subject to 

combination of inner and outer axial air streams 

(Fig. 8) produce higher growth rates than liquid 

sheets swirling in quiescent gas medium (Fig. 3) 

due to increase in the relative velocities and the 

combined effect of centrifugal and aerodynamic 

forces. Higher air velocities would correspond to 

air blast atomization while lower air velocities 

would resemble a simplex atomizer configuration. 

The effect of combination of inner and outer air 

swirl in the presence of their corresponding axial 

velocities for swirling liquid sheets is shown in 

Fig. 9 respectively. In order to determine the 

effect of gas swirl, Fig. 9 is compared with Fig. 8, 

which consists of purely axial gas velocities. It 

can be concluded that swirl imparted to inner and 

outer gas streams have contrasting effects on the 

instability of swirling liquid sheets. This 

phenomenon can be explained as follows. The 

centrifugal force due to liquid swirl at the outer 

interface tends to push a perturbed interface 

further outward and exhibits a destabilizing effect. 

The pressure exerted on the outer interface by the 

swirling gas is higher than that at the unperturbed 

interface and hence tend to push the perturbed 

sheet back to its undisturbed state. Hence outer 

gas swirl has a stabilizing effect on a swirling 

liquid sheet. At the inner interface, the combined 

effect of the centrifugal forces due to liquid swirl 

which is of free vortex type and inner gas swirl 

which has a solid body rotation profile, increase 

the amplitude of perturbation. Thus, inner gas 

swirl has a destabilizing effect on a swirling 

liquid sheet. However, the range of axial wave 

numbers remains unaffected due to the effect 

inner and outer gas swirl when compared with 

liquid sheets subject to purely axial gas velocities. 

Primary break up length, ligament diameter and 

droplet diameter for Fig. 9 are decreases 

compared to Fig. 3 and improves combustion and 

reduces emissions and fuel consumption. So Fig. 

9 has a shorter Primary break up length compared 

to Fig. 3. Also ligament diameter and droplet 

diameter of Fig.  9 is shorter than Fig. 9. The 

result is visible by comparing Fig. 4 to 6 with Fig. 

10 to 12. 
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Fig. 8: Dispersion diagram at Wel= Wes=1000,Wei=Weo=30, gi=go=0.00123, h=0.95 

 

 
Fig. 9: Dispersion diagram at Wel=Wes=1000,Wei=Weo=Wesi=Weso =30, gi=go=0.00123, h=0.95 
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Fig. 10: The Effect of Liquid Viscosity on the primary break up of spray at Wel=Wes= 1000, Wei =Weo =Wesi 

=Weso= 30, gi=go=0.00123, h=0.95 

 
Fig. 11: The Effect of Liquid Viscosity on Ligament diameter at Wel=Wes= 1000, Wei =Weo =Wesi =Weso= 

30, gi=go=0.00123 , h=0.95 
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Fig. 12: The Effect of Liquid Viscosity on Droplet diameter at Wel=Wes= 1000, Wei =Weo =Wesi =Weso= 30,  

gi=go=0.00123 , h=0.95 

 

4. Conclusions 

By varying the value of the axial wave number, 

we solved the root with the maximum imaginary 

part that represented the maximum growth rate of 

disturbance corresponding to the most unstable 

wave number.  

From this study, we have drawn the following 

conclusions: 

1- The maximum growth rate increases with 

Reynolds number. 

2- Higher liquid velocity would lead to shorter 

breakup lengths and smaller droplets. 

3- With increasing the wave growth rate, Primary 

break up lengths and ligament diameter are 

reduced and thus the droplet diameter decreases. 

4- Liquid viscosity has a negative effect on the 

Primary break up lengths and it causes the 

increasing Primary break up length, ligament 

diameter and droplet diameter. 

5- Liquid viscosity increasing tends to decrease 

both the growth rate and the most unstable wave 

number. 

6- The damping effect of viscosity is significantly 

higher for a swirling sheet compared to a purely 

axially moving sheet. 

7- Liquid swirl promotes instability at high Weber 

numbers. 

8- Swirl imparted to inner and outer gas streams 

have contrasting effects on the instability of 

swirling liquid sheets. 

9- Outer gas swirl has a stabilizing effect on a 

swirling liquid sheet. 

10- Inner gas swirl has a destabilizing effect on a 

swirling liquid sheet. 
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11- Gas swirl causes the decreasing Primary break 

up length, ligament diameter and droplet diameter 

compared to a liquid sheet with both axial and 

swirl velocity. 

12- The combination of inner and outer air is 

more effective in destabilizing swirling liquid 

sheets than liquid sheet with both axial and swirl 

velocity. 
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