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Optimization of well locations and/or well injection/production controls by the 
trial-and-error method has proven to be computationally expensive and time-
consuming since numerous reservoir simulation studies need to be conducted to 
arrive at an optimum solution. A computationally inexpensive approach that 
combines response surface models and optimization algorithms in the 
optimization process is presented. A two-dimensional heterogeneous reservoir 
model with an injector and a producer was developed in this study with a 
reservoir simulator. Seven independent parameters namely bottom-hole 
pressure of the producer, gas injection rate, surfactant concentration, location of 
the producer and injector in i and j directions respectively were used. Using the 
minimum and maximum values of the independent parameters, Box-Behnken 
Design Method was used to generate fifty-six simulation runs, which were used 
as input in conducting reservoir simulations to arrive at an output. The input and 
output datasets were analyzed using experimental design software to generate 
a response surface model showing the relationship between cumulative oil 
produced and the seven independent parameters. The model was validated 
using statistical error analysis, the results of which show the accuracy and 
reliability of the model in navigating the design space. A comparison was made 
between cumulative oil produced obtained from the three optimization 
approaches. Results showed that a coupled well placement and well 
injection/production control optimization approach resulted in a higher value of 
cumulative oil produced. This work shows that considering a coupled well 
placement and well injection/production control optimization approach is 
preferable during field development planning and can be implemented using 
proxy models and optimization algorithms. 
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1.  Introduction 

1.1.  Background of the Study 

Gas flooding as an enhanced oil recovery technique still suffers a lot of setbacks such as viscous 

fingering, selective channeling through zones of high permeability, and gravity override of gas [1] 
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caused by large differences in viscosity and density between the displacing and the displaced fluids [2]. 

The result is poor volumetric sweep efficiency and early gas breakthrough. These operational challenges 

observed from gas injection strategies can be fully addressed using Foam injection and have resulted in 

the use of foam injection as an alternative to gas flooding during enhanced oil recovery.  

Foam enhanced oil recovery like any other EOR method can only be implemented after 

waterflooding has been conducted. The development of waterflooded heterogeneous oil reservoirs by 

this approach is usually faced with the need to ensure that field oil recovery and net present value are 

maximized, and investment and operational costs are minimized. Reservoir simulation can be used to 

achieve these objectives since it predicts field performance and ultimate recovery for various field 

development scenarios using reservoir simulation models. Some of the variables considered during 

reservoir or oilfield development are the number and type of well, well locations, and well 

injection/production controls. Well injection/production controls considered during foam injection are 

bottom-hole pressure of production well, gas injection rate, and surfactant concentration and were 

adopted in this study. 

Previous research focused on using direct optimization approaches in determining either optimal 

well locations, well injection/production controls, or joint well placement and well injection/production 

controls in making field development decisions. MATLAB and Eclipse 300 reservoir simulator were 

integrated to develop software for optimizing waterflooding in a 2-dimensional synthetic reservoir [3]. 

The program carried out several ensemble-based optimization procedures, including robust 

optimization, mean-variance optimization, and conditional value at risk optimization.  

Awotunde (2014) presented a joint optimization approach for determining the optimal location of 

wells, well rates, well type, and the number of wells [4]. The search interval of the well controls was 

separated into three parts: one for the region where the well is an injector, another for the region where 

there is no well, and a third for the region where the well is a producer. A differential evolution (DE) 

optimization algorithm was used for this study. This approach was able to effectively identify optimum 

well locations, optimum well controls, optimum well type and the optimum number of wells. To 

simultaneously optimize well locations and well control parameters, Li et al. (2012) used a simultaneous 

perturbation and stochastic approximation (SPSA) approach because of its robustness in minimizing 

errors during the calculation of the cost function. The authors used a channeled layer of the SPE10 model 

and the three-dimensional PUNQ-S3 reservoir in conducting several numerical experiments to illustrate 

the performance improvement that can be achieved by the simultaneous optimization of well placement 

and well control using SPSA [5]. 

All the past work presented used an approach that involved optimizing a reservoir simulation model 

by creating an interface between an optimizer (optimization algorithm) and a reservoir simulator (black 

box). The optimization algorithm automatically runs the simulator to determine the optimum operating 

parameters that will maximize or minimize specific objective functions. This is a proven approach for 

optimizing petroleum reservoir and production processes. The only challenge of using this method is 

the computational complexity, time-consuming factor, the computational expensive cost for the 

reservoir simulator, and derivative-free approximations associated with it [6]. Application of proxy 

models in well placement and/or well injection/production control optimization during petroleum 

production operations becomes necessary as it aids in addressing the challenges observed with direct 

optimization.  

The focus of this study is on determining optimal well locations and well injection/production 

controls during foam injection. The coupled proxy-GA will be used to investigate the impact of various 

optimization approaches which include well placement, well injection/production control, and a 

coupled well placement and well injection/production control optimization approach on oil recovery 

performance during foam injection. 
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1.2.  Problem Statement 

Well placement optimization problems are usually formulated by assuming fixed well 

injection/production control settings while well injection/production control optimization problems 

are formulated by assuming fixed well locations. Solving these two problems separately can result in 

suboptimal solutions which are unfavorable in terms of achieving maximum field oil recovery. A 

solution to this problem is to consider the two scenarios simultaneously as a coupled well placement 

and well injection/production control optimization problem. However, optimization of well placement 

and/or well injection/production control parameters using the trial and error method is a challenge. 

This is because it involves conducting an infinite number of full-field numerical reservoir simulations to 

determine the optimum well locations and well injection/production control parameter values that will 

maximize field oil recovery. This approach is computationally expensive and time-consuming. 

Numerous studies have been conducted in the past couple of years by different researchers in the area 

of well placement and/or well control optimization [5, 7-11]. The researchers focused on determining 

the optimal location and/or controls placed on the wells using different optimization algorithms, such 

that the algorithm provides input to the reservoir simulator which runs to determine injected and 

produced fluid volumes required for calculating the objective function. Based on the optimization 

strategy, a new set of input data is generated for the reservoir simulator to perform the process again. 

This process continues till a set of parameters that gives the highest maximum or lowest minimum value 

of the objective function as desired is determined. This method is computationally complex, expensive, 

and time-consuming. This challenge is addressed in this study by developing a response surface model 

of the reservoir simulation model which when coupled to an optimization algorithm, can reliably and 

accurately determine an optimum solution in less time. 

1.3.  Objectives of the Study 

The main objective of this study is to develop a reservoir simulation proxy model using the design 

of experiments and response surface methodology and use it to investigate the impact of well placement, 

well control, or a coupled well placement and well control optimization approach on foam injection 

performance. The specific objectives of this study are 

a) Develop a proxy model using design of experiments and response surface methodology 

which shows the relationship between an objective function (cumulative oil produced) and 

well placement and well control parameters. 

b) Use Genetic algorithm in MATLAB Global optimization toolbox in well placement, well 

control and a coupled well placement and well control optimization study with the 

developed proxy model as the fitness function. 

c) Compare the cumulative oil produced obtained from each scenario to determine and 

recommend the best optimization approach to be utilized during the development of green 

and mature petroleum reservoirs. 

2.  Literature Review 

2.1.  Oil Recovery Processes 

Oil recovery processes are subdivided into primary, secondary, and tertiary recovery processes [12], 

and production from a typical petroleum reservoir is usually based on these stages taking place 

chronologically. Reservoir production by primary oil recovery entails the use of a distinct form of energy 

in pushing the reservoir fluids to the surface [13], and less than 30% of original oil in place is recovered 

by primary oil recovery processes which are through natural flow and artificial lift [14]. Secondary oil 

recovery methods such as waterflooding and gas injection are usually implemented to drive more oil 

from the reservoir towards the production wells when primary oil recovery processes are no longer 
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feasible. An immiscible gas injection process is not as effective as a waterflood process, causing 

secondary recovery to be used almost synonymously to waterflooding [12]. The common use of 

waterflooding as a secondary recovery method is because water is inexpensive and readily available in 

large volumes and is effective in increasing oil recovery. Significant quantities of crude oil remain 

bypassed in the reservoir after primary and secondary recovery processes have been implemented [14] 

which can be recovered using enhanced oil recovery (EOR) methods.  

Research has shown that low salinity waterflooding (LSWF) which is a newly developed enhanced 

oil recovery method for sandstone and carbonate formations can result in higher oil recovery in 

comparison with in-situ brine or high salinity water injection into oil reservoirs [15]. Approaches used 

in previous studies for low salinity waterflooding which include either dilution of formation or seawater 

or tuning of ionic composition of seawater both of which are proven to increase oil recovery have been 

studied [16]. Both approaches were combined to generate water referred to as ion-tuned water that was 

used for LSWF [16]. Results from their study for the combined scenario showed an increase in oil 

recovery when compared to cases when the aforementioned approaches are considered individually. A 

classification of enhanced oil recovery methods which include Gas Injection EOR, Chemical EOR, 

Thermal EOR, and other EOR methods was presented [14]. Fluids injected into a reservoir for EOR 

purposes supplement the natural energy of the reservoir to displace oil to the production wells, interact 

with the rock-oil system to create favorable conditions for oil recovery by lowering interfacial tension, 

oil swelling, and reduction in oil viscosity, and wettability modifications [12]. 

Chemical recovery processes are proven EOR processes that have significantly contributed to global 

daily production depicted by their capability in recovering oil bypassed in the reservoir [17]. The 

authors highlighted that chemical EOR methods involve the injection of specially formulated chemicals 

such as alkaline, surfactants, and polymers which aims at increasing the potency of the injection fluid. 

These chemicals can be used as singles or in various combinations such as surfactant-polymer flooding, 

alkaline-polymer flooding, alkaline-surfactant flooding, and alkaline-surfactant-polymer flooding [18]. 

Surfactants are usually recommended for enhanced oil recovery and function in reducing interfacial 

tension, wettability alteration, lower capillary forces, facilitating oil mobilization, and enhancing oil 

recovery [19]. Surfactants can be classified as ionic, non-ionic, cationic, and amphoteric surfactants. 

Kumar et al. (2016) reported the wide use of ionic and non-ionic surfactants in chemical EOR as they 

are capable of influencing surface and interfacial properties of reservoir rock and fluids. The creation of 

ion pairs between the cationic heads of the surfactant molecules and the adsorbed acidic components 

of the crude oil on the carbonate surface results in the efficiency of cationic surfactants in wettability 

change from oil-wet to water wet, according to research [20]. 

According to the classification presented by Chen (2007) and Massarweh and Abushaikha (2020), it 

can be inferred that foam EOR is a special form of Chemical EOR since it is formed by a combination of 

a surfactant solution and a gas [14, 21].  

2.2.  Overview of Foam Injection 

Foam has been recognized as a fluid with unique rheological properties as it profoundly affects the 

flow patterns of non-wetting fluids in porous media [22]. Foam can improve the sweep efficiency of 

injected gas by reducing the effects of low gas viscosity and reservoir layering [23]. The author also 

highlighted two main processes that occur during foam enhanced oil recovery: Plugging and Mobility 

control. The plugging process plugs layers swept or invaded by gas near the injection well while the 

mobility control process reduces gas mobility throughout the gas-swept regions. 

The presence of a foaming agent reduces the mobility of the displacing fluid (gas) causing favorable 

mobility ratios to be achieved with foam, which has the overall effect of achieving a uniform sweep of 

oil to the production wells. This results in an improvement in oil recovery [24]. The authors also 
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highlighted that the presence of surfactant reduces interfacial tensions between the displaced fluid (oil) 

and the rock as it reduces the capillary pressure between oil and the rock.  

Studies on the simulation of foam flow in porous media have been conducted over the past couple 

of decades by different researchers. The two fundamental approaches for modeling foam flow in porous 

media are population balance (PB) models and local equilibrium (LE) models [1]. Most reservoir 

simulators like Eclipse, CMG-STARS and UTCHEM use local equilibrium models in simulating foam flow 

in porous media [1] because they are simpler to use, require fewer parameters, and numerical 

difficulties encountered with population balance models are avoided [25].  

Four methods for injecting foam into porous media for enhanced oil recovery are presented in the 

literature [1, 2]. These include Co-injection of gas and aqueous surfactant solution, and this involves the 

simultaneous injection of both fluid components from a single well into the reservoir; Surfactant-

alternating-gas (SAG) in which surfactant and gas are injected as separate slugs from a single well into 

the reservoir; Dissolving surfactants in supercritical Carbondioxide such that as they come in contact 

with water in the reservoir, foam is formed; and Injecting surfactant solution and gas into different 

layers of the reservoir. In this case, surfactant solution is injected into the upper layer of the reservoir 

while gas is injected into the lower layer. Co-injection of gas and surfactant and surfactant alternating 

gas injection methods were considered the two main methods for the injection of foam into porous 

media [26]. The author reported that the surfactant alternating gas (SAG) injection method is more 

favorable at the field scale because improved injectivity is achieved when gas and surfactant are injected 

alternately, and also because of reduced risk of corrosion and risks related to material compatibility. In 

this paper, foam injection into the presented heterogeneous reservoir model is by co-injection of gas 

and surfactant. 

Pilot studies in the Kern River Field and the South Belridge Field involving foam injection for two 

years and one year respectively showed a major increase in incremental oil recovery [27].  

Sunmonu and Onyekonwu (2013) conducted a simulation study that investigated the possibility of 

increasing Nigeria’s oil production by using foam enhanced oil recovery method [28]. A significant 

increase in oil recovery was observed for foam injection in comparison with gas and waterflooding. Also, 

a significant reduction in gas-oil ratio and gas production was observed with foam flooding and this is 

attributed to a reduction in gas mobility in the presence of foam. According to Adebanjo and Olusegun 

(2015), enhanced oil recovery methods such as CO2 injection, polymer flooding, and foam flooding can 

be considered as effective enhanced oil recovery methods for Nigeria’s petroleum industry. The authors 

evaluated the application of foam injection in unconsolidated sands in the Niger Delta with the aim of 

determining its economic viability for oil reservoirs in the region. Their results showed an increase in 

total field oil production by foam injection in comparison with gas flooding [29]. 

2.3.  Overview of Proxy Modeling 

Proxy models are mathematically or statistically specified functions that reproduce or approximate 

the output of a full-field reservoir simulation model given a set of input parameters [30]. The polynomial 

regression model, multivariate kriging model, thin-plate splines model, and artificial neural network 

model are all examples of proxy models used in reservoir modeling [30]. Proxy models can serve as an 

alternative to reservoir simulation models and can aid in overcoming the challenges observed by 

running numerous full-field numerical reservoir simulations to arrive at an optimum solution [31]. The 

authors also presented the advantages of using proxy models in place of full-scale reservoir simulation 

models which are: runs in a short amount of time, takes into account a practical, less expensive, and 

appropriate estimate of the real reaction to improving computer efficiency, identifies the most 

important factors and their interactions with the answer, enables a more in-depth examination of the 

response's combined impact of all independent factors. 
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Combining proxy models and optimization algorithms can make optimization of engineering 

systems fast, easy, and computationally inexpensive. Proxy models have been used by numerous 

authors to study petroleum engineering systems. The applications of proxy modeling in various aspects 

of petroleum engineering were reported to include sensitivity analysis, aided history matching, field 

development planning, risk analysis, optimization, and reservoir characterization [31].  

The time taken to run a full reservoir simulation study is a fraction of the time taken by a proxy 

model, and in reservoir simulation studies, proxy models are used in uncertainty and optimization 

studies [32]. The results from a proxy model does not necessarily give a 100% match of the numerical 

simulation model results but a minimal range of error between actual or simulated and model calculated 

or predicted results is obtained [33]. Wide application of design of experiments in uncertainty analysis 

in reservoir simulation studies have been reported [34]. The author highlighted the use of this method 

by numerous authors in determining the effect of different reservoir rock and fluid parameters on 

factors such as fluid in-place volumes, oil recovery, and net present value.   

Design of experiments method was used to minimize the number of simulation runs required to 

carry out uncertainty analysis [35]. The authors studied the impact of uncertain parameters on oil 

reservoir production profile. The authors also carried out an uncertainty analysis on the Dena Field with 

10 factors at 3 levels. One parameter at a time (OPAT) method was used to determine the most 

influential parameters on reservoir behavior. A three-level full factorial design which resulted in 81 runs 

and an inscribed central composite design which resulted in 28 simulation runs was used on the 

determined influential parameters to carry out the uncertainty analysis. 

Experimental design method was used in selecting a development plan for the Agbami field [36]. 

This approach helped obtain maximum information with minimal computational effort. The authors 

used the Plackett-Burman design method in screening the parameters that significantly impacted the 

desired response. This was followed by using the D-optimal design technique in generating observations 

of the desired response. A comparison was made between a space-filling Maxmin Latin Hypercube 

sampling architecture with quadratic polynomial, kriging, multivariate adaptive regression spline 

(MARS), the Box-Behnken design with a quadratic polynomial response, and additivity and variance 

stabilizing (AVAS) [32]. The best strategy for fitting the model to data was the Box-Behnken 

experimental design method with a quadratic polynomial.  

Proxy models were constructed with design of experiment for the integrated optimization of an oil 

field [37]. The seven most important parameters on the goal functions (response) were selected from 

16 parameters using a two-level Plackett-Burman design of experiment approach. For the three goal 

functions (net present value (NPV), cumulative oil produced (COP), and cumulative water produced 

(CWP), the proxy model was built using a three-level Box-Behnken experimental design approach. The 

authors employed multi-objective optimization to find the set of parameter values that maximized NPV 

and COP while minimizing CWP. Proxy models were developed for estimating oil recovery under 

waterflood and gas flood scenarios using experimental design methodologies [38]. The model was 

designed to evaluate and rank potential waterflooding or gas injection reservoirs. The generated proxy 

models were shown to be strong and may be employed during an initial screening research for water 

and gas flood candidates, according to the findings of their study. 

Proxy models of the PUNQ-S3 reservoir model were developed with DOE and RSM, and used in multi-

objective optimizations for history matching the PUNQ-S3 reservoir [39]. The use of design of 

experiments in reservoir studies focuses on aspects in which the effects of one or more factors on a 

system or process are being investigated. This approach aids reservoir engineers to determine and 

adjust the most influential factors such that the reservoir is at optimum condition while ensuring 

maximum petroleum production. Uniform and Box-Behnken design methods and response surface 

methodology were used  in developing proxy models for predicting the performance of water drive 
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reservoirs [40]. The proxy models showed the relationship between recovery factor and cumulative 

water produced with seven independent parameters. The authors used the metaheuristic bat algorithm 

in determining the set of parameters that maximized the recovery factor and minimized cumulative 

water production which was used to calculate undiscounted net present value. The ideal number of 

wells and their matching locations, the optimum individual well production rate, perforation thickness, 

and tube head pressure are all factors to consider. To improve determination of injection well location 

for waterflooding in heterogeneous reservoirs, a data-driven modeling technique involving the use of 

artificial neural networks were utilized by the researchers to forecast fluid output as a function of 

heterogeneity and injection well placement [41]. 

3.  Materials and Method 

3.1.  Materials 

The Materials used in this study are a reservoir simulator, experimental design software, and global 

Optimization toolbox in MATLAB.  

a) The reservoir simulator was used in developing a synthetic heterogeneous reservoir model 

and in running simulations based on realizations generated with the experimental design 

software 

b) The experimental design software was used to generate parameter realizations for running 

simulations with the reservoir simulator. Using input parameter realizations and responses 

from reservoir simulation, the proxy model is developed. 

c) Global Optimization Toolbox was used to determine the optimum set of parameters of the 

proxy model that maximized the objective function. Genetic Algorithm was used in this 

study. 

3.2.  Method 

A simple synthetic heterogeneous reservoir model developed with a reservoir simulator. The 

reservoir model consists of 48 x 48 x 1 grid blocks with dimensions of 300 x 300 x 100 ft in the X, Y and 

Z directions respectively. The reservoir model consists of 2,304 grid blocks and the dimensions of the 

reservoir model in the X, Y, and Z directions are 14400 x 14400 x 100 ft respectively. Tables 1 shows the 

rock and fluid properties used in reservoir model development. Two wells: one producer and one 

injector were used in this study. Figure 1 shows an illustration of a two-dimensional (2D) heterogeneous 

reservoir model with the injection well (INJ1) and production well (PROD1) placed as shown. 

Table 1. Reservoir Model Parameters 

Property Value 

API Gravity 45°API 

Gas Gravity 0.06054 

Water Density 64.79 Ibm/𝑓𝑡3 

Datum Depth 8400 ft. 

Pressure at Datum Depth 4800 psia 

Reservoir Thickness 200 ft. 

Depth of Oil Water Contact 8600 ft. 

Depth of Gas Oil Contact 8400 ft. 

Permeability Range 30.01 to 961.79 md 
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Figure 1. Synthetic Heterogeneous Reservoir Model 

3.2.1.  Parameter Ranges for Development of Response Surface Model 

In this study, the response surface model was developed by considering well locations and controls 

placed on wells, and was in the form of a quadratic polynomial model. This model was then used in 

combination with genetic algorithm in determining the optimum parameters that will maximize 

cumulative oil produced for each of well placement, well control and a coupled well placement 

optimization and comparisons made. Table 1 shows the range for well placement and well control 

variables considered in this study as independent variables. 

Table 2. Parameter Ranges for the well placement and well control optimization problem 

Parameter Symbol Minimum value Maximum value unit 

BHP of Producer X1 500 4500 Psia 

Gas injection rate for Injector X2 1000 100000 MSCF/day 

Surfactant concentration for Injector X3 0.1 3 Ib/STB 

Location of Producer in the i direction X4 1 48 - 

Location of Producer in the j direction X5 1 48 - 

Location of Injector in the i direction X6 1 48 - 

Location of Injector in the j direction X7 1 48 - 

3.2.2.  Generation of Parameter realizations for running Reservoir Simulations 

To build parameter realizations for executing reservoir simulations with the Eclipse 100 reservoir 

simulator and to determine the link between response functions and other independent variables, the 

Box Behnken design approach was used referred to as a rotatable second-order design based on three-

level incomplete factorial designs. The Box–Behnken design unique organization allows the number of 

design points to grow at the same pace as the number of polynomial coefficients. The number of 

experimental runs that can be obtained using Box-Behnken experimental design method is given by 

Equation 1 [42]. 

𝑁 =  𝑘2 + 𝑘 +  𝑐𝑝 (1) 

where N is the number of runs, k is the number of factors and c_p is the replicate number of the central 

point.  

From Equation 1, and considering 7 parameters, a total of 56 simulation runs as depicted in Table 2 

were generated. Each of the generated datasets were used to conduct different reservoir simulations to 
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arrive at corresponding responses or outputs referred to as cumulative oil produced. The input and 

output data are analyzed using Design Expert Software to develop a proxy model in which the 

cumulative oil produced is presented as a function of 7 independent parameters as depicted in Equation 

2. 

𝐶𝑂𝑃 = 𝑓(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7) (2) 

3.2.3.  Optimization 

Optimization is an important tool in decision science and in the analysis of physical systems whose 

use requires the identification of an objective function such as profit, time, or any quantity that can be 

represented by a single number. The goal of optimization is to find optimum values of a set of 

independent variables that can maximize or minimize specific objective functions.  

The developed model has both well placement and well control parameters as independent 

variables of the form shown in Equation 2. The proxy model will be coded in MATLAB and genetic 

algorithm used in optimization studies in which three optimization approaches will be investigated: well 

injection/production control optimization, well placement optimization, and a coupled well placement 

and well injection/production control optimization approach. 

a) The well injection/production control optimization approach was evaluated by fixing the 

injector and producer well locations on grid (1, 1) and grid (48, 48) respectively.  In this case, 

the well locations did not change while the well injection/production control parameters for 

the model which are the bottom-hole pressure of the production well (X1), the gas injection 

rate (X2), and the surfactant concentration (X3) changed between the minimum and 

maximum values presented in Table 1.  

b) For the well placement optimization approach, the well injection/production control 

parameters which are bottom-hole pressure of the producer (X1), gas injection rate (X2), 

and surfactant concentration (X3) were fixed at 2500 psia, 50500 Mscf/day, and 1.55 IB/STB 

respectively while the well locations change between 1 and 48 both in the i and j directions 

for the injector and producer. The well location for the producer (X4 and X5) and injector 

(X6 and X7) are presented as coordinates in i and j direction respectively as shown in Table 

1. 

c) For the coupled well placement and well control optimization approach, the well locations 

and well injection/production controls are not fixed, they change during optimization with 

genetic algorithm between the minimum and maximum values for each variable.  

4.  Results and Discussion 

4.1.  Results 

4.1.1.  Conducting Reservoir Simulations from parameter realizations 

Using the data ranges for each scenario shown in Table 1, parameter realizations for running 

reservoir simulations were generated using Box Behnken design method. For 7 variables, a total of 56 

simulation runs were conducted to determine cumulative oil produced for each run. Each simulation 

was conducted for 3660 days and the cumulative oil produced for each run are presented in Table 3. 

Table 3. Parameter Realizations and Responses from Simulation 

Run A:X1 

PSIA 

B:X2 

MSCF/Day 

C:X3 

IB/STB 

D:X4 E:X5 F:X6 G:X7 COP 

MMSTB 

1 2500 1000 1.55 25 48 25 1 34.1096 

2 4500 50500 0.1 25 1 25 25 36.0231 
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3 2500 1000 1.55 25 1 25 48 29.9037 

4 2500 50500 3 1 25 25 1 58.479 

5 4500 50500 1.55 25 25 48 1 45.2476 

6 2500 100000 1.55 25 1 25 48 89.1215 

7 500 1000 1.55 48 25 25 25 42.2253 

8 4500 50500 0.1 25 48 25 25 35.2632 

9 2500 100000 1.55 25 48 25 48 9.05635 

10 2500 50500 1.55 48 48 1 25 59.4241 

11 4500 100000 1.55 48 25 25 25 33.4108 

12 2500 1000 0.1 25 25 1 25 37.542 

13 4500 1000 1.55 1 25 25 25 3.03754 

14 2500 100000 1.55 25 48 25 1 98.7802 

15 2500 1000 3 25 25 48 25 37.6494 

16 2500 1000 1.55 25 1 25 1 27.2037 

17 2500 50500 0.1 48 25 25 1 50.8907 

18 2500 100000 0.1 25 25 1 25 68.3015 

19 500 50500 3 25 1 25 25 62.319 

20 2500 100000 0.1 25 25 48 25 56.4466 

21 500 50500 1.55 25 25 48 48 73.7247 

22 2500 50500 0.1 48 25 25 48 48.3666 

23 500 50500 0.1 25 1 25 25 59.8491 

24 500 100000 1.55 1 25 25 25 57.5282 

25 2500 50500 1.55 1 48 1 25 32.403 

26 500 100000 1.55 48 25 25 25 47.042 

27 2500 50500 1.55 48 1 48 25 38.0516 

28 2500 50500 1.55 1 48 48 25 64.1986 

29 2500 50500 3 1 25 25 48 54.0981 

30 2500 50500 0.1 1 25 25 48 51.1992 

31 500 50500 1.55 25 25 1 48 80.3668 

32 4500 50500 1.55 25 25 48 48 40.2163 

33 2500 50500 0.1 1 25 25 1 54.9441 

34 2500 50500 1.55 1 1 1 25 32.228 

35 2500 50500 1.55 48 48 48 25 26.9367 

36 2500 50500 3 48 25 25 48 50.7093 

37 2500 1000 3 25 25 1 25 37.6502 

38 500 50500 1.55 25 25 48 1 79.7806 

39 2500 50500 3 48 25 25 1 54.0189 

40 4500 1000 1.55 48 25 25 25 3.01493 

41 500 50500 1.55 25 25 1 1 85.1036 

42 4500 50500 3 25 48 25 25 36.8214 

43 2500 50500 1.55 48 1 1 25 71.931 

44 2500 1000 1.55 25 48 25 48 31.7031 

45 500 50500 0.1 25 48 25 25 56.7827 

46 4500 100000 1.55 1 25 25 25 40.5907 

47 2500 100000 1.55 25 1 25 1 4.2026 

48 4500 50500 1.55 25 25 1 1 48.2522 

49 2500 100000 3 25 25 1 25 68.6802 

50 2500 50500 1.55 1 1 48 25 54.2584 

51 500 50500 3 25 48 25 25 58.22 

52 4500 50500 1.55 25 25 1 48 44.3887 

53 4500 50500 3 25 1 25 25 37.7262 

54 2500 1000 0.1 25 25 48 25 37.5059 

55 500 1000 1.55 1 25 25 25 43.3086 

56 2500 100000 3 25 25 48 25 56.3731 

4.1.2.  Development of Proxy model 

The input and output data for each scenario shown in Table 3 were analyzed using the experimental 

design Software to generate a proxy model (response surface model) showing the relationship between 
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cumulative oil produced and the stated seven (7) independent parameters. Table 4 shows the analysis 

of variance for the proxy model. 

Table 4. Analysis of Variance for Response Surface Model 

Source Sum of Squares df Mean Square F-value p-value 
 

Model 22307.66 36 619.66 461.47 < 0.0001 significant 

A-X1 2484.27 1 2484.27 1850.08 < 0.0001 
 

B-X2 1733.32 1 1733.32 1290.84 < 0.0001 
 

C-X3 3.76 1 3.76 2.80 0.1108 
 

D-X4 16.40 1 16.40 12.22 0.0024 
 

E-X5 12.58 1 12.58 9.37 0.0064 
 

F-X6 109.22 1 109.22 81.34 < 0.0001 
 

G-X7 38.75 1 38.75 28.86 < 0.0001 
 

AB 299.06 1 299.06 222.71 < 0.0001 
 

AD 2.38 1 2.38 1.78 0.1985 
 

AE 3.78 1 3.78 2.82 0.1097 
 

AF 2.87 1 2.87 2.13 0.1604 
 

BC 0.0004 1 0.0004 0.0003 0.9871 
 

BD 34.66 1 34.66 25.81 < 0.0001 
 

BE 4.35 1 4.35 3.24 0.0879 
 

BF 72.75 1 72.75 54.18 < 0.0001 
 

BG 3.14 1 3.14 2.34 0.1429 
 

CD 0.1159 1 0.1159 0.0863 0.7721 
 

DE 141.84 1 141.84 105.63 < 0.0001 
 

DF 1809.24 1 1809.24 1347.38 < 0.0001 
 

EF 15.45 1 15.45 11.51 0.0031 
 

EG 4045.36 1 4045.36 3012.66 < 0.0001 
 

A² 274.09 1 274.09 204.12 < 0.0001 
 

B² 1955.45 1 1955.45 1456.26 < 0.0001 
 

C² 45.47 1 45.47 33.86 < 0.0001 
 

D² 922.23 1 922.23 686.80 < 0.0001 
 

E² 776.71 1 776.71 578.43 < 0.0001 
 

F² 32.82 1 32.82 24.44 < 0.0001 
 

BEG 3592.73 1 3592.73 2675.58 < 0.0001 
 

DEF 8.77 1 8.77 6.53 0.0194 
 

A²D 1.02 1 1.02 0.7586 0.3946 
 

AB² 59.31 1 59.31 44.17 < 0.0001 
 

AE² 153.38 1 153.38 114.22 < 0.0001 
 

B²E 79.02 1 79.02 58.85 < 0.0001 
 

BC² 22.77 1 22.77 16.96 0.0006 
 

CD² 5.36 1 5.36 3.99 0.0602 
 

DE² 38.15 1 38.15 28.41 < 0.0001 
 

Residual 25.51 19 1.34 
   

Cor Total 22333.17 55 
    

Results from Analysis of Variance (ANOVA) show that a majority of the model terms are significant 

because their p-values are less than 0.05. However, model terms that have a p-value greater than 0.1 

which are considered to be insignificant are allowed in the reduced cubic model because they support 

hierarchy. Based on the significant model terms and those allowed to support the hierarchy obtained 

from ANOVA, a reduced cubic model in which cumulative oil produced is a function of well placement 

and well injection/production control parameters was developed and is presented in Equation 3. 
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𝐶𝑂𝑃 =  −3.70992 + −0.000859842 ∗  𝑋1 +  0.000751982 ∗  𝑋2 +  7.79259 ∗  𝑋3 +  1.9691 
∗  𝑋4 +  2.02727 ∗  𝑋5 +  0.38541 ∗  𝑋6 +  0.0114161 ∗  𝑋7 +  −1.76207𝑒 − 08 
∗  𝑋1 ∗ 𝑋2 +  3.84574𝑒 − 05 ∗  𝑋1 ∗ 𝑋4 +  −0.000260269 ∗  𝑋1 ∗ 𝑋5 +  1.2734𝑒
− 05 ∗  𝑋1 ∗ 𝑋6 + −6.14675𝑒 − 05 ∗  𝑋2 ∗ 𝑋3 + −1.78917𝑒 − 06 ∗  𝑋2 ∗ 𝑋4 
+  1.28733𝑒 − 05 ∗  𝑋2 ∗ 𝑋5 +  −2.59241𝑒 − 06 ∗  𝑋2 ∗ 𝑋6 +  1.84547𝑒 − 05 
∗  𝑋2 ∗ 𝑋7 +  −0.0649173 ∗  𝑋3 ∗ 𝑋4 +  −0.0173153 ∗  𝑋4 ∗ 𝑋5 + −0.025251 
∗  𝑋4 ∗ 𝑋6 +  0.00449203 ∗  𝑋5 ∗ 𝑋6 +  −0.00156415 ∗  𝑋5 ∗ 𝑋7 + −1.33221𝑒
− 06 ∗  𝑋1^2 +  −9.98709𝑒 − 09 ∗  𝑋2^2 +  −2.13688 ∗  𝑋3^2 +  −0.0213978 
∗  𝑋4^2 +  −0.0377149 ∗  𝑋5^2 +  0.00367041 ∗  𝑋6^2 + −7.75223𝑒 − 07 ∗  𝑋2
∗ 𝑋5 ∗ 𝑋7 +  −8.06562𝑒 − 05 ∗  𝑋4 ∗ 𝑋5 ∗ 𝑋6 + −5.36861𝑒 − 09 ∗  𝑋1^2 ∗ 𝑋4
+  7.85933𝑒 − 13 ∗  𝑋1 ∗ 𝑋2^2 +  5.61018𝑒 − 06 ∗  𝑋1 ∗ 𝑋5^2 +  6.6865𝑒 − 11 
∗  𝑋2^2 ∗ 𝑋5 +  1.98583𝑒 − 05 ∗  𝑋2 ∗ 𝑋3^2 +  0.00125275 ∗  𝑋3 ∗ 𝑋4^2
+  0.000238113 ∗  𝑋4 ∗ 𝑋5^2 

(3) 

The model (Equation 3) was used to carry out optimization studies with emphasis on making 

comparisons between cumulative oil produced obtained during each of well placement, well control, 

and a coupled well placement and well injection/production control optimization which is effective and 

computationally inexpensive. 

4.1.3.  Validation of Proxy model 

The proxy model was validated using the coefficient of determination, R^2  obtained from a plot of 

actual versus predicted cumulative oil produced. Also, actual and predicted cumulative oil produced 

versus simulation runs were plotted on the same axis to determine if the actual and predicted results 

were in close agreement with each other. 

Root mean Square Error (RMSE) and Average Absolute Percentage Error (AAPE) were calculated 

using Equations 4 and 5, and were found to be 0.675 and 2.239 % respectively. 

𝑅𝑀𝑆𝐸 =  √∑ (𝑌𝑠𝑖𝑚 − 𝑌𝑝𝑟𝑒𝑑)
2𝑛

𝑖=1

𝑛
 (4) 

𝐴𝐴𝑃𝐸 =
1

𝑁
 ∑ (√((

𝑌𝑠𝑖𝑚 −  𝑌𝑝𝑟𝑒𝑑

𝑌𝑠𝑖𝑚

)
2

))

𝑁

𝑖=1

∗ 100 % (5) 

A plot of actual vs. predicted cumulative oil produced, and actual and predicted versus simulation 

runs are shown in Figures 2 and 3 respectively. 

 

Figure 2. Plot of Actual versus Predicted Cumulative Oil Produced depicting 𝑅2 value 

y = 0.9989x + 0.0547
R² = 0.9989
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Figure 3. Actual and Predicted Cumulative Oil Produced vs Simulation Runs 

4.1.4.  Determination of Optimum well locations and/or well control parameters with Genetic algorithm 

Genetic algorithm was used to determine from the developed proxy model shown in Equation 3 the 

following:  

a) The optimum well locations with well control settings fixed at the midpoints of the minimum 

and maximum values that maximized the cumulative oil produced  

b) The optimum controls placed on wells with the well locations fixed at grid (1, 1) and (48, 48) 

for the injector and producer respectively that maximized the cumulative oil produced. The 

well control variables X1, X2, and X3 changed between the minimum and maximum values 

of each variable as stated in Table 1. 

c) The optimum well locations and controls placed on all wells that maximized cumulative oil 

produced. The well locations and controls placed on the wells (X1 to X7) changed 

simultaneously. 

 Results from the optimization study for the three scenarios are shown in Table 5 and illustrated in 

Figure 5. 

Table 5. Well Placement, Well Control and a coupled well placement and well control optimization results 

 Optimum Well Placement and/or well injection/production Control Variables 
for each case 

Optimization Approach 
X1 

PSIA 

X2 

MSCF/day 

X3 

IB/STB 
X4 X5 X6 X7 

COP 

MMSTB 

Well Control Optimization 1253.045 81943.545 2.623 1 1 48 48 87.573 

Well Placement Optimization 2500 50500 1.55 46 1 1 48 92.998 

Well Placement and Well Control 

Optimization 
984.355 71478.8 2.116 45 1 1 48 106.172 
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Figure 4. Comparison of Cumulative Oil Produced for different Optimization Approaches 

4.1.5.  Comparison between Optimization and Simulation Results 

The optimum input parameters obtained for each case were used as input data to the reservoir 

simulation model to ascertain if results obtained from both scenarios are in agreement with each other. 

Table 6 and Figure 7 shows a comparison of cumulative oil produced from optimization and simulation 

using the optimum input parameter values presented in Table 3. 

Table 6. Cumulative Oil Produced obtained from simulation and Optimization using optimum parameter values 

Optimization Approach Cumulative Oil Produced, MMSTB  

 Optimization Simulation Error 

Well Control 87.573 77.33 0.1325 

Well Placement 92.998 73.66 0.2625 

Well Placement and Well Control 106.172 102.39 0.0369 

 

Figure 5. Comparison between Cumulative Oil Produced obtained from Simulation and Optimization studies 

 

 

87.573
92.998

106.172

0

20

40

60

80

100

120

C
u

m
u

la
ti

v
e 

O
il

 P
ro

d
u

ce
d

, M
M

ST
B

Well Control Optimization

Well Placement Optimization

Coupled Well Placement and Well Control
Optimization

87.573
92.998

106.172

77.33
73.66

102.39

0.1325 0.2625 0.0369
0

20

40

60

80

100

120

Well Control Optimization
Approach

Well Placement Optimization
Approach

A coupled well placement and
well Control Optimization

Approach

C
u

m
u

la
ti

v
e 

O
il

 P
ro

d
u

ce
d

, M
M

ST
B

Cumulative Oil Produced from Optimization Cumulative Oil Produced from Simulation error



O. I. Nwanwe et al.,  IJPGE, Vol. (2022), Article ID: IJPGE-2204152112754, 18 pages 

15 

 

4.2.  Discussion of Results 

Determining optimum well locations and/or well injection/production controls that will maximize 

field oil recovery is a computationally expensive and time-consuming process which is the challenge 

being addressed in this paper. Response surface methodology was used to develop a proxy model 

(equation 3) in which cumulative oil produced (dependent variable) is a function of well placement and 

well injection/production control (independent) variables.  

A two-dimensional heterogeneous reservoir model with an injector and producer (Figure 3) was 

used in this study to illustrate the approach. The well locations were represented as coordinates in the 

i and j directions while the well injection/production control parameters consist of the bottom-hole 

pressure of the producer, gas injection rate at the injection well, and concentration of surfactant added 

to the gas being injected at the injection well. This gives a total of seven independent parameters. The 

Box-Behnken design method was used to generate parameter realizations based on the minimum and 

maximum value of each variable which was used as input in conducting reservoir simulations to obtain 

cumulative oil produced (Table 2). The input and output datasets were further analyzed using ANOVA 

from which a proxy model (Equation 3) which shows the relationship between cumulative oil produced 

and seven independent parameters shown in Table 1 was developed.  

The developed proxy model was validated by making a plot of actual cumulative oil produced versus 

predicted cumulative oil produced as shown in Figure 4 which depicts a coefficient of determination 

R^2 of 0.9989 which is close to unity. The proxy model was also validated by plotting actual and 

predicted cumulative oil produced against the simulation runs (Figure 5) which shows that actual and 

predicted results are in close agreement with each other depicted by an overlap of actual by predicted 

results. Root mean squared error (RMSE) and average absolute percentage error (AAPE) were 

calculated using equations 4 and 5, and were also used in validating the model whose values were found 

to be 0.675 and 2.239 % respectively. A combination of a coefficient of determination value, R^2 of 

0.9989, an overlap of actual cumulative oil produced versus simulation runs curve by predicted 

cumulative oil produced versus simulation runs curve, and relatively low values of RMSE and AAPE 

indicate that the developed model is accurate, reliable, and can be used to navigate the design space, 

used in sensitivity analysis, and optimization studies. 

The developed proxy model was coded in a MATLAB script file and with the aid of genetic algorithm 

in MATLAB Global Optimization toolbox, the optimum set of parameters that maximized cumulative oil 

produced was determined. The developed proxy model was used in well injection/production control, 

well placement, and a coupled well placement and well injection/production control optimization 

studies and comparisons were made between the cumulative oil produced for all scenarios. Results in 

Figure 6 show that a coupled well placement and well injection/production control optimization 

approach resulted in a cumulative oil produced of 106.172 MMSTB higher than that obtained for each 

of well injection/production control and well placement optimization approaches. This shows that it is 

preferable to simultaneously consider well placement and well control variables during field 

development optimization. A comparison was made between cumulative oil produced obtained from 

simulation and optimization using the optimum input parameters and results from Table 6 and Figure 

5 shows good agreement depicted by low percentage errors for all three scenarios. 

5.  Conclusion  

The following conclusions can be drawn from the results obtained in this study 

a) A computationally inexpensive, accurate and reliable approach that consumes less time 

is proven to be effective in well placement and/or well injection/production control 

optimization. 
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b) A reservoir simulation proxy model (response surface model) which uses cumulative oil 

produced (COP) as the dependent variable and well placement and/or well 

injection/production control as independent variables was developed using design of 

experiments and response surface methodology. 

c) The response surface model was coupled to genetic algorithm in determining with ease 

and minimal computational effort, the optimum set of parameter values that will 

maximize the objective function. 

d) It is possible to determine optimum well locations and/or optimum well 

injection/production controls by coupling a reservoir simulation proxy model with an 

optimization algorithm. 

e) The developed proxy model was used in comparing the efficiency of well placement 

and/or well injection/production control optimization approaches on-field oil recovery 

during foam injection to ascertain the best optimization approach in making field 

development planning decisions. 

f) A coupled well placement and well injection/production control optimization approach 

was found to be preferable in field development optimization because it resulted in a 

maximum value of the objective function (cumulative oil produced) as shown in this 

study. It can be inferred in this study that considering coupled well placement and well 

injection/production control optimization resulted in an improvement in foam injection 

performance.  

6.  Further Work 

Further research work in this regard will focus on using a reservoir model based on real field data 

with more wells which will consider two or more objective functions such as Net Present Value (NPV), 

Payout Time (POT), and Return on Investment (ROI) in addition to cumulative oil produced in making 

field development decisions. In this case, a multi-objective optimization algorithm such as a multi-

objective genetic algorithm or multi-objective particle swarm optimization algorithm will be used. 

 

NOMENCLATURE  

EOR Enhanced Oil Recovery 

X1 Bottomhole pressure of producer, psia 

X2 Gas injection Rate, MSCF/day 

X3 Surfactant Concentration, IB/STB 

X4, X5 Location of Producer in the i and j direction respectively 

X6, X7 Location of Injector in the i and j direction respectively 

COP Cumulative Oil produced 

RMSE Root mean squared error 

AAPE Average Absolute Percentage Error, % 

𝑹𝟐 Coefficient of Determination 
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