

International Journal of Petroleum and Geoscience Engineering

Journal homepage: www.htpub.org/ijpge/

ISSN: 2289-4713

Developed Correlation of Gas Compressibility of High Impurities Natural Gas Reservoirs, UAE Case Study

Ghareb Mostafa Hamada ^{a,*}, Mouza Al-Shamsi ^b

^aPetroleum Engineering Department, College of Engineering, The American University of Kurdistan, Kurdistan, Iraq ^bADNOC, Abu-Dhabi, UAE

Article	Abstract
Article history Received: 11 October 2022 Received in revised form: 01 November 2022 Accepted: 06 December 2022	The gas compressibility factor is a key parameter in determining natural properties. The most common sources of gas compressibility factor (Z) values are experimental measurements, equation of state, and empirical correlations. There are more than twenty correlations available with two variables for calculating the Z-factor from fitting Standing-Katz chart values in EOS or through the fitting technique. The theory of corresponding states dictates that the Z-
Keywords:	factor can be uniquely defined as a function of reduced pressure and temperature. Natural gases frequently contain material other than hydrocarbon components, such as nitrogen, carbon dioxide, and hydrogen sulfide. Hydrocarbon gases are classified as sweet or sour depending on the hydrogen sulfide content. Both sweet and sour gases may contain nitrogen, carbon dioxide, or both. The compositions of most natural gases are hydrocarbon of the same family (paraffin hydrocarbons), so the correlation of this type is possible but containing non-hydrocarbon on the gases, make the prediction difficult. This paper focuses on evaluating the correlations to get an accurate gas
Gas compressibility, Natural gas, Impurities, Determination techniques	This paper focuses on evaluating the correlations to get an accurate gas compressibility factor for natural gas reservoirs with non-hydrocarbon components for gas reservoirs in UAE. It is found that gas pseudo-critical temperature decreases with the increase of N ₂ and H ₂ S. Also, it is observed that in the tested gas reservoirs which contain C_{7+} by Stewart Mixing Rules and Kay's there are some deviations, but this deviation is an error value of Z-factor between two methods that became negligible by using the correction method for non- hydrocarbon. Natural gases, which contain H ₂ S and CO ₂ frequently, exhibit different compressibility factor behavior than do sweet gases. It is recommended to use Stewart Mixing Rules to investigate the impact of non-hydrocarbon impurities on natural gas properties with high impurities of N ₂ and H ₂ S.

1. Introduction

The natural gas compressibility factor is a vital parameter in petroleum engineering calculation. Currently, the calculation models for calculating natural gas compressibility factors in engineering are not accurate and efficient enough. Gas compressibility factor (Z) is the main factor on calculating gas

^{*}Corresponding author at: Petroleum Engineering Department, College of Engineering, The American University of Kurdistan, Kurdistan, Iraq

Email address: ghareb.hamada@auk.edu.krd

G. M. Hamada & M. Al-Shamsi, IJPGE, Vol. (2023), Article ID: IJPGE-2212052112831, 15 pages

properties such as formation volume factor, density, compressibility and viscosity. All these properties are necessary in the oil and gas industry for evaluating newly discovered gas reservoirs, calculating initial gas reserves, predicting future gas production and designing production tubing, surface facilities and pipelines. The accurate measurement of natural gas related fluids is difficult. The compressibility factor is a ubiquitous concept in measurement. It arises in many industry practices and standard. The industry standard is to measure gas properties, pressure-volume-temperature in the laboratory using reservoir samples. The drawback is that these isothermally measured PVT data is applicable at measures pressure and reservoir temperature. Calculation Methods such as correlations and equation of state are used to predict properties at other pressure and temperature. Also, laboratory analyses for PVT behavior are sometimes expensive and time consuming [1-4]. Correlations, which are used to predict gas compressibility factor, are much easier and faster than equation of state. Natural gases frequently contain material other than hydrocarbon components, such as nitrogen, carbon dioxide and hydrogen sulfide. Hydrocarbon gases are classified as sweet or sour depending on the hydrogen sulfide content. Both sweet and sour gases may contain nitrogen, carbon dioxide or both. Sometimes these correlations have comparable accuracy to equation of state. Predicting compressibility factor for gas containing non-hydrocarbon (impurities) is much difficult than that for sweet gas. The compositions of most natural gases are hydrocarbon of the same family (paraffin hydrocarbons), so the correlation of this type is possible but containing non-hydrocarbon on the gases, make the prediction difficult. Therefore, several attempts have been made to predict compressibility factor for sweet gases, Wichert and Aziz and Carr-Kobayashi-Burrows presented correction for the presences of hydrogen sulfide and carbon dioxide for determining the compressibility factor. The objective of this study is evaluating the pervious correlations which calculate gas compressibility factor for gases contain non-hydrocarbon component and observe the effect of these component on Z-factor. The suggested correlation is practical and accurate for predicting the natural gas compressibility factor under an extensive range of pressure conditions [5-8].

2. Correlation parameters

The most common method is to use one of the forms of the principle of corresponding states. In this form, gas compressibility factor is expressed as function of pseudo-reduced pressure and temperature (Ppr, Tpr). Compressibility factors are function of composition as well as temperature and pressure. Empirical correlations simply and easily predict physical properties, so they are widely utilized in the oil and gas field. Based on the experimental PVT data for gas reservoirs (non-ideal gases) and using the pseudo-reduced pressure and pseudo-reduced temperature of these gases, Standing and Katz presented their standard analytical approach and chart for the petroleum industry to estimate the Z-factor for natural gas. Standing and Katz (SK) presented a chart for determining gas compressibility factor based on the principle of corresponding states. The SK chart was prepared for binary mixture of low molecular weight sweet gases. Several mathematical expressions fitting the SK chart have been proposed to calculate the gas compressibility factor [9-11]. Dranchuk- Abou- Kassem (DK) correlation is the most accurate representation of SK chart. When dealing with gas mixture, the gas mixture critical pressure (Ppc) and temperature (Tpc) are required. Critical properties of natural gas are calculated from either gas composition or gas gravity. Several Mixing rules have been proposed to calculate mixture critical properties of natural gases. Among these methods, Kay's mixing rule and Stewart-Burkhardt-Voo (SBV) are the most widely used. Kay's mixing rule is simple and provides an accurate determination of gas compressibility factor for sweet gases of low molecular weight. Satter and Campbell evaluated several mixing rules for calculating properties of natural gases [8-10]. They concluded that Stewart-Burkhardt-Voo rule known as SBV provided the most satisfactory results especially for gases of high molecular weight. Sutton studied the performance of several mixing rule for calculating compressibility factor for gas condensates that contain a large amount of heptane's plus fraction. Sutton modified SBV mixing rule to account for the presence of heptane's plus in the natural gases. Standard laboratory analysis gives composition of natural gases through hexane and lump components heavier than hexane in heptane plus fraction known as C₇₊ critical properties of pure components are well documented.

The critical properties of the C_{7+} fraction are calculated from correlations using molecular weight and specific gravity of the heptane's plus. Standing presented correlation of pseudo critical properties to gas gravity based on low molecular weight which are:

$$P_{pc} = 706 - 51.7\gamma_g - 11.1\gamma_g^2 \tag{1}$$

$$T_{pc} = 187 + 330\gamma_g - 71.5\gamma_g$$
(2)

The previous correlation work only when there no non-hydrocarbon gases present on the gases. Sutton developed the following correlation work with high molecular weight of gases.

$$P_{pc} = 756.8 - 131.0\gamma_g - 3.6\gamma_g^2 \tag{3}$$

$$T_{pc} = 169.2 + 349.5\gamma_g - 74.0\gamma_g^2 \tag{4}$$

The gases which Sutton used to develop previous correlation were sweet gases with minor amount of carbon dioxide and nitrogen and no hydrogen sulfide. Then, Elsharkawy et al. developed Sutton correlation but will cover heavier hydrocarbons and minor of hydrogen sulfide.

$$P_{pc} = 787.06 - 147.34\gamma_g - 7.916\gamma_g^2 \tag{5}$$

$$T_{pc} = 149.18 + 345.14\gamma_g - 66.976\gamma_g^2 \tag{6}$$

3. Methods of Calculating the Pseudo-Critical Gas Properties

The pseudo-critical properties provide a mean to correlate the physical properties of mixtures with principle of the corresponding states. The principle of corresponding states suggests that pure but similar gases have the same gas deviation or Z-factor at the same values of reduced pressure and temperature. The mixture of chemically similar gases can be correlated with reduced temperature and reduced pressure [10, 12].

There are several methods which are:

1. Mixing Rules developed by Stewart et al and Kay's requires the gas composition to be known.

2. Estimating pseudo-critical properties when the gas composition is not known, developed by Sutton.

The theory corresponding states dictates that the Z-factor can be uniquely defined as function of reduced pressure and temperature. The reduce pressure and temperatures are:

$$P_{pr} = \frac{P}{P_{pc}}$$

$$T_{pr} = \frac{T}{T_{pc}}$$
(8a)

The values of pseudo-critical pressure and temperature can be estimated from the following equations if the composition of the gas and the critical properties of the individual component are known (kay):

$$P_{pc} = \sum_{i=1}^{n} P_{ci} y_i$$

$$T_{pc} = \sum_{i=1}^{n} T_{ci} y_i$$
(8b)

3.1. Procedures for Stewart Et Al. Mixing Rules

1. Estimate the boiling temperature of the C₇₊ fraction.

$$T_{bc7+} = (4.5579 M_{C7+}^{0.15178} \gamma_{C7+}^{0.15427})^3$$
⁽⁹⁾

2. Estimate the pseudo-critical pressure of the C_{7+} fraction.

$$T_{pcC7+} = \exp \begin{bmatrix} 8.3634 - \frac{0.0566}{\gamma_{C7+}} - \left(0.24244 + \frac{2.2898}{\gamma_{c7+}} + \frac{0.11857}{\gamma_{C7+}^2} \right) \frac{T_{bC7+}}{1000} + \frac{1.4685}{\gamma_{C7+}} + \frac{3.648}{\gamma_{C7+}} + \frac{0.47227}{\gamma_{c7+}^2} \right) \frac{T_{bC7+}}{10^7} - \left(0.42019 + \frac{1.6977}{\gamma_{C7+}^2} \right) \frac{T_{bC7+}}{10^{10}} \end{bmatrix}$$
(10)

3. Estimate the pseudo-critical temperature of the C_{7+} fraction.

$$T_{pcC7+} = (341.7 + 811\gamma_{C7+}) + (0.4244 + 0.1174\gamma_{C7+})T_{bC7+} + (0.4669 - 3.2623\gamma_{C7+})\frac{10^5}{T_{bC7+}}$$
(11)

4. Determine the correction factor Fj, ξj and ξk for high- molecular weight component using Sutton's method.

$$F_{j} = \frac{1}{3} \left(\frac{yT_{c}}{P_{c}} \right)_{C7+} + \frac{2}{3} \left(\frac{y^{2}T_{c}}{P_{c}} \right)_{C7+}$$

$$\xi_{j} = 0.6081F_{j} + 1.1325F_{j}^{2} - 14.004F_{j}y_{C7+} + 64.434F_{j}y_{C7+}^{2}$$

$$\xi_{K} = \left(\frac{T_{c}}{\sqrt{P_{c}}} \right)_{C7+} \left(0.3129y_{C7+} - 4.8156y_{C7+}^{2} + 27.3751y_{C7+}^{3} \right)$$
(12)

- 5. Obtain the critical pressure and temperature of the remaining component from Table 1.
- 6. Determine the pseudo-critical pressure and temperature of the gas
- 7. Calculate the parameters J and K

$$J = \frac{1}{3} \sum_{i=1}^{nc} \left(\frac{yT_c}{P_c} \right)_i + \frac{2}{3} \left[\sum_{i=1}^{nc} \left(y \sqrt{\frac{T_c}{P_c}} \right)_i \right]^2 \text{ and}$$

$$K = \sum_{i=1}^{nc} \left(\frac{yT_c}{\sqrt{P_c}} \right)_i$$
(13)

8. Correct the parameters J and K for the C_{7+} fraction

$$J' = J - \xi_j$$

$$K' = K - \xi_K$$
(14)

9. Calculate the pseudo-critical temperature and pressure

$$T_{pc} = \frac{K^{2'}}{J'}$$

$$P_{pc} = \frac{T_{pc}}{J'}$$
(15)

- 10. Calculated the Pseudo-reduced pressure and temperature by using Equation7
- 11. Finding Z-factor from Standing & Katz compressibility factors

3.2. Procedures for Sutton's Correlations of Sweet Gas

- 1. Estimate the gas gravity of the mixture
- 2. Calculate the pseudo-critical pressure and temperature for the hydrocarbon component by using the following equation:

$$P_{pch} = 756.8 - 131.0\gamma_h - 3.6\gamma_h^2 \tag{16}$$

$$T_{pch} = 169.2 + 349.5\gamma_h - 74.0\gamma_h^2$$

3. Ignore the nitrogen contamination, then

$$P_{pc} = P_{pch}$$

$$T_{pc} = T_{pch}$$
(17)

- 4. Calculated the Pseudo-reduced pressure and temperature from Equation 7
- 5. Finding Z-factor from Standing & Katz compressibility factors chart

3.3. Procedures for Sutton's Correlations of Sour Gas

1. Determine the gravity of the hydrocarbon components of the Mixture

$$\gamma_{h} = \frac{\gamma_{w} - 1.1767 \, y_{H2S} - 1.5196 \, y_{co2} - 0.9672 \, y_{N2} - 0.6220 \, y_{H2O}}{1 - y_{H2S} - y_{Co2} - y_{N2} - y_{H2O}} \tag{18}$$

2. Calculate the pseudo-critical pressure and temperature for the hydrocarbon component by using the following equations.

$$P_{pch} = 756.8 - 131.0\gamma_h - 3.6\gamma_h^2$$

$$T_{pch} = 169.2 + 349.5\gamma_h - 74.0\gamma_h^2$$
(19)

3. Calculate the Pesudo-critical properties of the total mixture.

$$P_{pc} = (1 - y_{H2S} - y_{CO2} - y_{N2} - y_{H2O})P_{pch} + 1,306 y_{H2S} + 1,071 y_{CO2} + 493.1 y_{N2} + 3200.1 y_{H2O} T_{pc} = (1 - y_{H2S} - y_{CO2} - y_{N2} - y_{H2O})T_{pch} + 672.35 y_{H2S} + 547.58 y_{CO2} + 227.16 y_{N2} + 1164.9 y_{H2O}$$

$$(20)$$

3.4. Methods of Correction the Pseudo-Critical Gas Properties for H₂S and CO₂ Contamination

Natural gases, which contain H_2S and CO_2 frequently, exhibit different compressibility factor behavior than do sweet gases. Wichert and Aziz developed a simple, easy to use calculation procedure to account for these differences.

3.4.1. Wichert-Aziz Correction Method

This method permits the use of the Standing-Katz chart, by using a pseudo-critical temperature adjustment factor, which is function of the concentration of CO_2 and H_2S in the sour gas. The following Wichert and Aziz correlation

$$\xi = 120 \left(A^{0.9} - A^{1.6} \right) + 15 \left(B^{0.5} - B^4 \right)$$
⁽²¹⁾

where the pseudo-critical temperature, T'pc and pressure P'pc, adjusted for CO_2 and H_2S contamination are:

$$T_{pc} = T_{pc} - \xi$$

$$P_{pc} = \frac{T_{pc} P_{pc}}{\left[T_{pc} + B(1-B)\xi\right]}$$
(22)

where,

A: Sum of the mole fractions of H₂S and CO₂ in the gas mixture

B: Mole fraction of H₂S in the gas mixture.

3.5. Methods of Correction the Pseudo-Critical Gas Properties for N_2 and H_2O Vapor Contamination

Carr-Kobayashi and Burrows developed a simple procedure to adjust the pseudo-critical properties of natural gases when non-hydrocarbon components are present.

3.5.1. Carr-Kobayashi and Burrows Correction Method

The procedures to obtain the correction are following:

1. Known the specific gravity of the natural gas, calculate the pseudo-critical temperature and pressure from Figure (3) or by the following equation:

$$T_{pc} = 168 + 325\gamma_g - 12.5\gamma_g^2$$

$$P_{pc} = 677 + 15\gamma_g - 37.5\gamma_g^2$$
(23)

2. Calculate the corrections for nitrogen and water vapor.

$$T_{pc,cor} = -246.1y_{N2} + 400y_{H20}$$

$$P_{pc,cor} = -162.0y_{N2} + 1270y_{H20}$$
(24)

3. Calculate the pseudo-critical temperature and pressure for nitrogen and water vapor.

$$T_{pc}^{"} = \frac{T_{pc}^{'} - (227.2)y_{N2} - (1,165)y_{H2O}}{(1 - y_{N2} - y_{H2O})} + T_{pc,cor}$$

$$P_{pc}^{"} = \frac{P_{pc}^{'} - (493.1)y_{N2} - (3,200)y_{H2O}}{(1 - y_{N2} - y_{H2O})} + P_{pc,cor}$$
(25)

where T'_{Pc} and P'_{pc} are the pseudo-critical temperature and pressure corrected for H_2S and CO_2 with wichert and Aziz correlation.

4. If there is no H_2S or CO_2 in the gas mixture, then T'p=Tpc and P'pc=Ppc.

4. Results and Discussion

The data are analyzed and Stewart method and Kay's mixing rules for predicting pseudo-reduce pressure and temperatures are used for these data with knowing composition. Moreover, according to present of non-hydrocarbon on the data used the correction methods which are Wichert- Aziz and Carr-Kobayashi and Burrows

The data of three natural gas sandstone reservoirs (A, B, C) with water vapor, carbon dioxide and hydrogen sulfide but with light molecular weight while, the others (D, E, F) have C₇₊ and without water vapor are shown in Table 2, so Stewart et al. Mixing Rules and Kays has been adopted in our study, the calculation and result for six reservoirs are appear in Tables 3 to 13. From calculation, it is found that gas pseudo-critical temperature decreases with increase of N₂ as shown in Figure 2. Moreover, pseudo-critical temperature with increasing H₂S is decreases with limitation as shown in Figure 7 then slightly increase with increase temperature maybe it related to the behavior of H₂S in reservoir. In addition, gas pseudo-critical pressure increases with increase N₂ Figures 1 and 2 and H₂S as shown in Figures 3 and 4. Also, it is observed that in the tested gas reservoirs which contain C₇₊ by Stewart Mixing Rules and Kay's there are some deviations on Z-factor between two methods that became negligible by using the correction method for non-hydrocarbon as shown in Figure 5 and Table 10 &13. It is obvious from the error of Z-factor calculated by Stewart for reservoirs D, E and F (Table 10) is lower than Z error for reservoirs A, B and C (Table 6) with Kay's technique, therefore it is recommended to adopt Stewart Mixing Rules to solve the problem on non-hydrocarbon impurities in natural gas behavior and more specifically Z-factor for studied gas reservoir.

Component	Molecular	Critical pressure	Critical Temperature
	weight	(Psia)	(Rº)
H2S	34.08	1300	672.45
CO2	44.01	1071	547.45
N2	28.01	493	227.27
C1	16.04	667.8	343.04
C2	30.07	707.8	549.76
C3	44.01	616.3	665.68
i-C4	58.12	529.1	734.65
n-C4	58.12	550.7	765.32
i-C5	72.15	490.4	828.77

Table 1.	Physical	Properties	of defined	component
----------	----------	------------	------------	-----------

	Α	В	С	D	Ε	F
Pressure(psia)	6000	5200	5000	4010	2640	2748
Temperature (Ro)	673.8	657.6	657.6	711.6	672	690
C1	59.59	69.14	71.32	57.95	61.83	40
C2	0.02	2.27	0.1	12.59	7.7	11.93
С3	0.01	1.96	0	7.94	7.63	14
i-C4	0	0.46	0	1.13	1.73	4.7
n-C4	0	1.46	0	3.16	4.38	7.37
i-C5	0	0	0	1.42	2.38	2.38
n-C5	0	0	0	2.01	2.6	5.6
C6	0	0	0	2.18	4.34	7.54
C7+	0	0	0	4.54	6.87	5.93
CO2	12.59	7.9	9.05	3.9	0.3	0.34
N2	11.95	0.1	6.35	0.2	0.24	0.21
H2S	12.09	13.03	9.44	2.98	0	0
H20	3.75	3.68	3.74	0	0	0

Table 2. Six different reservoirs in Abu-Dhabi

Table 3. Reservoir A using Kay's Rule at P=6000 psi and T=673.8 $R^{\rm o}$

Commonant	V:	N/:	V:M:	Tai	ViTei	Dei	ViDai
component	YI	IVII	YIMI	101	YII CI	PCI	MPCI
CO2	0.1259	44	5.5396	547.6	68.94284	1071	134.8389
N2	0.1198	28	3.3544	239.3	28.66814	507.5	60.7985
H2S	0.1209	34	4.1106	672.35	81.287115	1306	157.8954
H20	0.0375	18	0.675	1164.85	43.681875	3200.1	120.00375
C1	0.5956	16	9.5296	343	204.2908	666.4	396.90784
C2	0.0002	30	0.006	549.6	0.10992	706.5	0.1413
C3	0.0001	45	0.0045	665.7	0.06657	616	0.0616
i-C4	0	58	0	734.1	0	527.9	0
n-C4	0	58	0	765.3	0	550.6	0
Total	1		23.2197		427.04726		870.64729

Table 4. Reservoir B using Kay's Rule at P=5200psi and T=657.6 $R^{\rm o}$

Component	Yi	Mi	YiMi	Tci	YiTci	Pci	YiPci
CO2	0.079	44	3.476	547.6	43.2604	1071	84.609
N2	0.001	28	0.028	239.3	0.2393	507.5	0.5075
H2S	0.1303	34	4.4302	672.35	87.607205	1306	170.1718
H20	0.0368	18	0.6624	1164.85	42.86648	3200.1	117.76368
C1	0.6914	16	11.0624	343	237.1502	666.4	460.74896
C2	0.0227	30	0.681	549.6	12.47592	706.5	16.03755
C3	0.0196	45	0.882	665.7	13.04772	616	12.0736
i-C4	0.0046	58	0.2668	734.1	3.37686	527.9	2.42834
n-C4	0.0146	58	0.8468	765.3	11.17338	550.6	8.03876
Total	1		22.3356		451.19747		872.37919

Component	Yi	Mi	YiMi	Tci	YiTci	Pci	YiPci
CO2	0.0905	44	3.982	547.6	49.5578	1071	96.9255
N2	0.0635	28	1.778	239.3	15.19555	507.5	32.22625
H2S	0.0944	34	3.2096	672.35	63.46984	1306	123.2864
H20	0.0374	18	0.6732	1164.85	43.56539	3200.1	119.68374
C1	0.7132	16	11.4112	343	244.6276	666.4	475.27648
C2	0.001	30	0.03	549.6	0.5496	706.5	0.7065
C3	0	45	0	665.7	0	616	0
i-C4	0	58	0	734.1	0	527.9	0
C5	0	72	0	828.77	0	490.4	0
Total	1		21.084		416.96578		848.10487

Table 5. Reservoir C using Kay's Rule at P=5000psi and T=657.6 R^o

Table 6. Properties and Compressibility factor for the three Reservoirs

	Α	В	С
РРс	870.647	872.379	848.105
TPc	427.047	451.197	416.966
PPr	6.891	5.961	5.895
TPr	1.578	1.457	1.577
Z	0.928	0.848	0.872
Трс'	400.563	426.246	394.149
Ppc'	811.305	819.004	797.964
Тр''	376.709	412.673	373.208
PP"	778.462	774.854	756.788
Tr	1.789	1.594	1.762
Pr	7.708	6.711	6.607
Z	1.004	0.920	0.946
(Z- Error)	0.0089	0.0065	0.0178

Table 7. Reservoir D using Stewart Mixing Rules

Component	Yi	Mi	yiMi	Tci (∘R)	Pci (psia)	yiTci/Pci	yi√Tci/Pci	yiTci/√Pci
N2	0.002	28.01	0.06	227.16	493.10	0.00	0.00	0.02
CH4	0.5795	16.04	9.30	343.00	666.40	0.30	0.42	7.70
C2H6	0.1259	30.07	3.79	549.59	706.50	0.10	0.11	2.60
СЗН8	0.0794	44.10	3.50	665.73	616.00	0.09	0.08	2.13
i-C4H10	0.0113	58.12	0.66	734.13	527.90	0.02	0.01	0.36
n-C4H10	0.0316	58.12	1.84	765.29	550.60	0.04	0.04	1.03
i-C5H12	0.0142	72.15	1.02	828.77	490.40	0.02	0.02	0.53
n-C5H12	0.0201	72.15	1.45	845.47	488.60	0.03	0.03	0.77
C6H14	0.0218	86.18	1.88	913.27	436.90	0.05	0.03	0.95
C7+	0.0454	114.23	5.19	1005.30	375.50	0.12	0.07	2.36
CO2	0.039	44.01	1.72	547.45	1071.00	0.02	0.03	0.65
H2S	0.0298	34.00	1.01	672.35	1306.00	0.02	0.02	0.55
Σ	1		30.39			0.80	0.86	19.66

Component	Yi	Mi	yiMi	Tci (∘R)	Pci (psia)	yiTci/Pci	yi√Tci/Pci	yiTci/√Pci
N2	0.0024	28.01	0.07	227.16	493.10	0.00	0.00	0.02
CH4	0.6183	16.04	9.92	343.00	666.40	0.32	0.44	8.22
С2Н6	0.077	30.07	2.32	549.59	706.50	0.06	0.07	1.59
СЗН8	0.0763	44.10	3.36	665.73	616.00	0.08	0.08	2.05
i-C4H10	0.0173	58.12	1.01	734.13	527.90	0.02	0.02	0.55
n-C4H10	0.0438	58.12	2.55	765.29	550.60	0.06	0.05	1.43
i-C5H12	0.0238	72.15	1.72	828.77	490.40	0.04	0.03	0.89
n-C5H12	0.026	72.15	1.88	845.47	488.60	0.04	0.03	0.99
C6H14	0.0434	86.18	3.74	913.27	436.90	0.09	0.06	1.90
C7+	0.0687	114.23	7.85	1005.30	375.50	0.18	0.11	3.56
CO2	0.003	44.01	0.13	547.45	1071.00	0.00	0.00	0.05
Σ	1		34.40			0.91	0.91	21.26

Table 8. Reservoir E using Stewart Mixing Rules

Table 9. Reservoir F using Stewart Mixing Rule

Component	Yi	Mi	yiMi	Tci (∘R)	Pci (psia)	yiTci/Pci	yi√Tci/Pci	yiTci/√Pci
N2	0.00	28.01	0.06	227.16	493.10	0.00	0.00	0.02
CH4	0.40	16.04	6.42	343.00	666.40	0.21	0.29	5.31
С2Н6	0.12	30.07	3.59	549.59	706.50	0.09	0.11	2.47
СЗН8	0.14	44.10	6.17	665.73	616.00	0.15	0.15	3.76
i-C4H10	0.05	58.12	2.73	734.13	527.90	0.07	0.06	1.50
n-C4H10	0.07	58.12	4.28	765.29	550.60	0.10	0.09	2.40
i-C5H12	0.02	72.15	1.72	828.77	490.40	0.04	0.03	0.89
n-C5H12	0.06	72.15	4.04	845.47	488.60	0.10	0.07	2.14
C6H14	0.08	86.18	6.50	913.27	436.90	0.16	0.11	3.29
C7+	0.06	114.23	6.77	1005.30	375.50	0.16	0.10	3.08
CO2	0.00	44.01	0.15	547.45	1071.00	0.00	0.00	0.06
Σ	1.00		42.43			1.07	0.99	24.92

	D	Е	F
Fj	0.044	0.070	0.059
Ej	0.007	0.002	0.004
Ek	0.355	0.397	0.380
J	0.762	0.851	1.017
К	19.660	21.256	24.924
J'	0.756	0.849	1.013
К'	19.305	20.859	24.544
Трс	493.256	512.496	594.900
Ррс	652.851	603.662	587.495
Tpc'	481.534	511.864	594.193
Ppc'	636.898	602.917	586.797
Тр"	493.263	511.958	594.448
PP"	653.206	602.792	586.654
Tr	1.478	1.313	1.161
Pr	6.296	4.379	4.684
Z	0.874	0.690	0.666
Z-Error %	0.0023	0.0056	0.0102

Component	yi	Mi	Tci (ºR)	Pci (psia)	yiTci	yiPci
N2	0.002	28.0	227.2	493.1	0.5	1.0
CH4	0.580	16.0	343.0	666.4	198.8	386.2
C2H6	0.126	30.1	549.6	706.5	69.2	88.9
СЗН8	0.079	44.1	665.7	616.0	52.9	48.9
i-C4H10	0.011	58.1	734.1	527.9	8.3	6.0
n-C4H10	0.032	58.1	765.3	550.6	24.2	17.4
i-C5H12	0.014	72.2	828.8	490.4	11.8	7.0
n-C5H12	0.020	72.2	845.5	488.6	17.0	9.8
C6H14	0.022	86.2	913.3	436.9	19.9	9.5
C7+	0.045	114.2	1005.3	375.5	45.6	17.0
CO2	0.039	44.0	547.5	1071.0	21.4	41.8
H2S	0.030	34.0	672.4	1306.0	20.0	38.9
Σ	1.000		8097.5	7728.9	489.5	672.4

Table 11. Reservoir D using Kay's Mixing Rules

Table 12. Reservoir E using Kay's Mixing Rules

Component	yi	Mi	Tci (ºR)	Pci (psia)	yiTci	yiPci
N2	0.0024	28.0	227.2	493.1	0.5	1.2
CH4	0.6183	16.0	343.0	666.4	212.1	412.0
C2H6	0.077	30.1	549.6	706.5	42.3	54.4
СЗН8	0.0763	44.1	665.7	616.0	50.8	47.0
i-C4H10	0.0173	58.1	734.1	527.9	12.7	9.1
n-C4H10	0.0438	58.1	765.3	550.6	33.5	24.1
i-C5H12	0.0238	72.2	828.8	490.4	19.7	11.7
n-C5H12	0.026	72.2	845.5	488.6	22.0	12.7
C6H14	0.0434	86.2	913.3	436.9	39.6	19.0
C7+	0.0687	114.2	1005.3	375.5	69.1	25.8
CO2	0.003	44.0	547.5	1071.0	1.6	3.2
Σ	1		7425.2	6422.9	504.0	620.2

Table 13	Reservoir	F using	Kay's	Mixing	Rules

Component	yi	Mi	Tci (ºR)	Pci (psia)	yiTci	yiPci
N2	0.0021	28.0	227.2	493.1	0.5	1.0
CH4	0.4	16.0	343.0	666.4	137.2	266.6
C2H6	0.1193	30.1	549.6	706.5	65.6	84.3
СЗН8	0.14	44.1	665.7	616.0	93.2	86.2
i-C4H10	0.047	58.1	734.1	527.9	34.5	24.8
n-C4H10	0.0737	58.1	765.3	550.6	56.4	40.6
i-C5H12	0.0238	72.2	828.8	490.4	19.7	11.7
n-C5H12	0.056	72.2	845.5	488.6	47.3	27.4
C6H14	0.0754	86.2	913.3	436.9	68.9	32.9
C7+	0.0593	114.2	1005.3	375.5	59.6	22.3
CO2	0.0034	44.0	547.5	1071.0	1.9	3.6
Σ	1		6877.7	5351.9	584.8	601.4

Figure 1. The mole percent of nitrogen verses pseudo-critical temperature.

Figure 2. The mole percent of nitrogen verses pseudo-critical Pressure.

Figure 3. The Z-factor verses pseudo-reduce temperature & pressure

Figure 4. The mole percent of H₂S verses pseudo-critical temperature

Figure 5. Z-factor obtained from Stewart & Kay and correction with impurities verses pseudo-critical temperature & pressure

5. Conclusions

- During this study, it is observed that pseudo-critical temperature decreases if the mole percent of N_2 increase. While, pseudo-critical pressure was increase with increasing the percentage of nitrogen. Also, the Z-factor increases with increasing pseudo- reduce pressure and temperature in all studied reservoirs,
- Pseudo-critical temperature decreases if the mole percent of H₂S increase. Z-factor for reservoirs A & B which contain C₇₊ by Stewart Mixing Rules and Kay's there are some deviation on Z-factor between two methods it is recommended to use Stewart Mixing Rules to investigate the impact of non-hydrocarbon impurities on natural gas properties.

Nomenclature

А	Mole fraction (H_2S+CO_2)
В	Mole fraction of H ₂ S
Р	Pressure, Pisa
Pc	Critical pressure, Pisa
Ppr	Pseudo-reduced pressure
Ррс	Pseudo-critical pressure, psia
P'pc	Corrected pseudo- critical pressure, psia
Т	Temperature, R ⁰
Тс	Critical temperature, R ⁰
Tpr	Pseudo-reduced temperature, R ⁰
Трс	Pseudo-critical temperature, R ⁰
Т'рс	Corrected pseudo-critical temperature, R ⁰
3	Pseudo-critical temperature adjustment factor
CO ₂	Carbon Dioxide

References

- [1] Elsharkawy A. M., Elkamel A.: Compressibility Factor for Sour Gas Reservoirs. in SPE Asia Pacific Oil and Gas Conference and Exhibition. (2000 of Conference). DOI: <u>10.2118/64284-MS</u>
- [2] Lee J., Wattenbargar R. A.: Gas Reservoir Engineering, Society of Petroleum Engineers (1996).
- [3] Rushing J. A., Newsham K. E., Van Fraassen K. C., Mehta S. A., Moore G. R.: Natural Gas z-factors at HP/HT Reservoir Conditions: Comparing Laboratory Measurements with Industry-Standard Correlations for a Dry Gas. in CIPC/SPE Gas Technology Symposium 2008 Joint Conference. (2008 of Conference). DOI: 10.2118/114518-MS

- [4] Sutton R. P.: Fundamental PVT Calculations for Associated and Gas/Condensate Natural-Gas Systems. SPE Reservoir Evaluation & Engineering, 10, 270-284 (2007). DOI: <u>10.2118/97099-PA</u>
- [5] Bello M. N., Musa M. A.: Prediction of Natural Gas Compressibility Factor in a Single-Phase Gas Reservoir: A Comparative Study. ARID ZONE JOURNAL OF ENGINEERING, TECHNOLOGY AND ENVIRONMENT, 16, 164-178 (2020).
- [6] Kareem L. A.: Z Factor: Implicit Correlation, Convergence Problem and Pseudo-Reduced Compressibility. in SPE Nigeria Annual International Conference and Exhibition. (2014 of Conference). DOI: <u>10.2118/172373-MS</u>
- [7] Omobolanle O. C., Akinsete O. O.: A Comprehensive Review of Recent Advances in the Estimation of Natural Gas Compressibility Factor. in SPE Nigeria Annual International Conference and Exhibition. (2021 of Conference). DOI: <u>10.2118/207083-MS</u>
- [8] Tian X., Xing X., Chen R., Pang S., Yang L.: Calculation Method of Natural Gas Compressibility Factor and its Application in Pipeline Trade. (2014 of Conference). DOI: <u>10.1115/IPC2014-33258</u>
- [9] Heidaryan E., Moghadasi J., Rahimi M.: New correlations to predict natural gas viscosity and compressibility factor. Journal of Petroleum Science and Engineering, 73, 67-72 (2010). DOI: <u>https://doi.org/10.1016/j.petrol.2010.05.008</u>
- [10] Obuba J., Ikiesnkimama S. S., Ubani C. E., Ekeke I. C.: Natural gas compressibility factor correlation evaluation for niger delta gas fields. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 6, 1-10 (2013).
- [11] Towfighi S.: An empirical equation for the gas compressibility factor, Z. Petroleum Science and Technology, 38, 24-27 (2020).
- [12] Xia Y., Bai W., Xiang Z., Wang W., Guo Q., Wang Y., Cheng S.: Improvement of Gas Compressibility Factor and Bottom-Hole Pressure Calculation Method for HTHP Reservoirs: A Field Case in Junggar Basin, China. Energies, 15, 8705 (2022).