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Petrophysical evaluation of shaly gas sand reservoirs is one of the most difficult 
problems. These reservoirs usually produce from multiple layers with different 
permeability and complex formation, which is often enhanced by natural 
fracturing. In this study, we propose a new model to predict porosity and 
permeability using derived data from NMR. The developed Artificial Neural 
Network (ANN) model uses the NMR T2 pin values, density and resistivity logs 
to predict porosity, and permeability for two test wells. The NN trained model 
has displayed good correlation with core porosity and permeability values, and 
with the NMR derived porosity and permeability in the test wells. This work 
focuses on determination of porosity (φDMR) from combination of density 
porosity, NMR porosity and permeability from NMR logs using Bulk Gas Magnetic 
Resonance Permeability (KBGMR). Neural network (ANN) technique is used to 
predict formation porosity and permeability using NMR and conventional 
logging data. Predicted porosity and permeability have shown a good correlation 
about 0.912 with core porosity and about 0.891 for permeability in the studied 
shaly gas sand reservoir. 
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1.  Introduction 

Porosity logs measurements require environmental corrections and are influenced by lithology and 

formation fluids. The porosity derived is the total porosity, which consists of producible fluids, capillary 

bound water and clay-bound water. However, NMR provides lithology independent porosity and 

includes only producible fluids and capillary bound water. Permeability is a measure of fluid rock 

conductivity. To be permeable, a rock must have interconnected porosity. Greater porosity usually 

corresponds to greater permeability; however, this is not always the case. Formation permeability is 

influenced by pore size, shape and continuity, as well as the amount of porosity. Permeability can be 

determined from resistivity gradients, permeability models based on porosity, φ, and irreducible water 

saturation (Swi), formation tester (FT) and nuclear magnetic resonance (NMR). Perhaps, the most 

important feature of NMR logging is the ability to record a real-time permeability log. The potential 
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benefits of NMR to oil companies are enormous. Log permeability measurements enable production 

rates prediction and allow optimization of production completion and programs stimulation while 

decreasing the cost of coring and testing wells especially in heterogeneous tight reservoirs where there 

is considerable permeability anisotropy [1].  

This work focuses on determination of porosity (φDMR) from combination of density porosity and 

NMR porosity and permeability from NMR logs using Bulk Gas Magnetic Resonance Permeability 

(KBGMR), a technique proposed by Hamada et al. (2008) [2], and then using the neural network (NN) 

technique to predict formation porosity and permeability using NMR and conventional logging data. The 

NN technique has been developed and applied in several field cases and the predicted porosity and 

permeability values were validated from the proposed NN algorithm. Predicted porosity and 

permeability have shown a good correlation with core porosity and permeability in the studied gas sand 

reservoir. 

2.  Methodology   

The field of interest is a gas condensate field producing from a Lower-Mesozoic reservoir. The 

reservoir is classified as a tight heterogeneous gas shaly sands reservoir. It suffers from lateral and 

vertical heterogeneity due to diagenesis effect (Kaolinite & Illite) and variation in grain size distribution. 

The petrophysical analysis indicates a narrow 8-12% porosity range, and a wide permeability range 

from 0.01 to 100 md. Figure 1 shows core porosity-permeability crossplot over whole reservoir section 

including all facies in different  wells. It is obvious that this is a case of heterogeneous reservoir with six 

porosity- permeability zones of wide range. The core data shows cloud of points with undefined trend, 

which could be roughly subdivided into six or seven sub-regions [1, 3]. 

 

Figure 1. Porosity-permeability plot in heterogeneous gas sand [3] 

In heterogeneous reservoirs, facies may change on few meters and down to few centimetres scales. 

The average fluid density in this case becomes unsatisfactory, this is mainly due to the heterogeneity of 

fluids distribution in the reservoir; thereupon, it is required to explore new porosity determination 

techniques that are independent of facies change. Due to reservoir heterogeneity; many cores were 

acquired in different wells covering different reservoir units to create the proper porosity-density and 

permeability models for each. The uncertainty associated with identification of the proper porosity and 

permeability model for each unit is high, which could result in high permeability estimation far beyond 

the actual well performance. Therefore, integration of non-standard tools like NMR with conventional 
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tools and special core analysis (SCAL) in the petrophysical evaluation is essential to reduce the 

uncertainty beyond the limitations of each tool in individual bases, especially in gas reservoirs [4-6]. 

3.  Density-Magnetic Resonance Porosity (φDMR) 

Freedman et al. (1998) proposed a combination of density porosity and NMR porosity (φDMR) to 

determine gas corrected formation porosity and flushed zone water saturation (Sxo) [7]. Density/NMR 

crossplot is superior to density/neutron crossplot for detecting and evaluating gas shaly sands. This 

superiority is because of thermal neutron absorbers in shaly sands on neutron porosities which causes 

neutron porosity readings to be shooting high. As a result, neutron/density logs can miss gas zones in 

shaly sands [3, 7]. On the other hand, NMR porosity readings are not affected by shale or rock 

mineralogy, and therefore density/ NMR (DMR) technique is the more reliable to indicate and evaluate 

gas shaly sands. 

 NMR porosity response in flushed gas zone is defined as 

𝜑𝑁𝑀𝑅 = 𝜑𝑆𝑔𝑥𝑜𝐻𝐼𝑔𝑃𝑔 + 𝜑𝐻𝐼𝐿(1 − 𝑆𝑔𝑥𝑜) (1) 

Density porosity response in gas flushed zone is defined as 

𝜌𝑏 = 𝜌𝑚(1 − 𝜑) + 𝜌𝐿𝜑(1 − 𝑆𝑔𝑥𝑜) + 𝜌𝑔𝜑𝑆𝑔𝑥𝑜 (2) 

Solution of Equations 1 & 2 for True Formation Porosity (Φ) 

𝜑 = 𝐴 × 𝜑𝐷 + 𝐵 × 𝜑𝑁𝑀𝑅 (3) 

where 𝐻𝐼𝑔 & 𝐻𝐼𝐿 are the hydrogen index in gas and liquid and 𝑃𝑔 is NMR gas polarization, 𝑆𝑔𝑥𝑜 is flush 

gas saturation and 𝜌𝑏 is bulk density and A, B are factors. 

3.1.  Calibration for φDMR Porosity: 

A curve fitting method has been used to calibrate the A & B constants values which are applied to 

the reservoir of interest. In our case we have selected well (A) where both core and NMR data were 

available over the same reservoir interval. Assuming core porosities are equal to φDMR, which is the gas 

corrected porosity. 

Equation 3 can be written in the following form. 

𝜑𝐶𝑜𝑟𝑒

𝜑𝑁𝑀𝑅
= 𝐴 ×

𝜑𝐷

𝜑𝑁𝑀𝑅
+ 𝐵 (4) 

The fitting trend line has a slope of A=0.65 and intercepts the Y axis at B=0.35, which results in DMR 

porosity transform as follows 

𝜑𝐷𝑀𝑅 = 0.65𝜑𝐷 + 0.35𝜑𝑁𝑀𝑅 (5) 

3.2.  DMR Porosity Results 

The results of φDMR transform applications in the two test wells A & B showed  very  good match 

between φDMR and core porosities as shown in Figures 2 and 3. As a result, it is considered being an 

independent facies porosity model. These corrected porosities can be used in conjunction with Timur-

Coates equation [5] to estimate accurate permeability in gas bearing formations. 

Figures 2 & 3 present well logs that show PHID & φDMR. Gamma ray and Caliper curves are shown in 

the first track (GR & CALI), second track shows depth in meters, the third one is resistivity, the fourth 

one is neutron-density logs, the fifth track shows comparison between core, density and NMR porosities, 
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the sixth track shows comparison between φDMR and core porosity, the seventh track shows saturations 

of gas (green shadow) and water (blue shadow) and the last track shows core permeability in mD. 

 

Figure 2. DMR Porosity and core porosity in well A [2] 
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Figure 3. DMR Porosity and core porosity in well B [2] 

The DMR method has the advantage of avoiding the use of fluid density and gas hydrogen index (HI) 

at reservoir condition for gas correction. Another advantage is that we can increase logging speeds as 

we do not need full polarization for gas [7, 8]. 

4.  Gas Sand Permeability Estimation from NMR (KBGMR) 

Bulk Gas Magnetic Resonance Permeability (KBGMR) technique is relatively new, presented by 

Abushanab et al. (2005) [3]  for permeability estimation in gas reservoirs. It has the same value in oil-

based mud (OBM) and water-based mud WBM conditions, as it depends on gas re-entry to the flushed 

zone after mud cake takes place and invasion stops. It is a dynamic concept of gas movement behind 

mud cake because of formation permeability, gas mobility and capillarity forces. Because gravity forces 

are constant, capillarity depends mainly on permeability and mobility depends on permeability and 

fluid viscosity which is constant for gas; the gas re-entry volume is a direct function on permeability. 

4.1.  BGMR Permeability Results 

Permeability is derived from empirical relationship between NMR porosity and mean values of T2 

relaxation times. Two permeability models are widely used in the industry Kenyon model [K=cx(φNMR)a 

× (T2)b] and Timer-Coates model [K=[(φNMR/c)a × (BVM/BVI)b] [8]. Kenyon model permeability is 

affected by gas and OBM filtrate (non- wetting phase). Timer-Coates permeability model works well in 

gas reservoirs, but it is affected by uncertainty of bulk volume irreducible (BVI) cut off values and 

wettability alteration by oil base mud (OBM) filtrate. After defining T2 cut off values, it is time to 

calibrate the fitting parameters (a, b and c) for studied shaly gas sand reservoir. Permeability 

determination by Timer-Coates model in the case of tight heterogeneous shaly gas sand was not 

satisfactory because of rock facies, tightness and the significant variation of T2 values for the same 

facies. Estimates of Kenyon and Timer- Coates permeability are both affected by hydrocarbon; therefore, 
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the development of a different permeability model is essential. NMR derived permeability is based on 

bulk gas volume (BG) in flushed zone. It is the difference between DMR (density magnetic resonance) 

porosity and NMR porosity. 

BG volume =  𝜑𝐷𝑀𝑅 − 𝜑𝑁𝑀𝑅 (6) 

The relationship can be normalized by dividing the gas volume by the total porosity of DMRP to be 

equal to flushed zone gas saturation, 𝑆𝑔𝑥𝑜 

𝑆𝑔𝑥𝑜 = (𝜑𝐷𝑀𝑅 − 𝜑𝑁𝑀𝑅)/𝜑𝐷𝑀𝑅 (7) 

The correlation between Sgxo and permeability in md has the following form. 

𝐾𝐵𝐺𝑀𝑅 = 0.18 × 10(6.4×𝑆𝑔𝑥𝑜) (8) 

KBGMR formula has been applied into two wells A and B, where Figures 4 and 5 show the results of 

the two wells respectively. Wells A, B show a good match between KBGMR permeability with core 

permeability using the same KBGMR transform. 

 

Figure 4. Well A, KBGMR permeability, track 6 [2]  
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Figure 5. Well B, KBGMR permeability, track 6 [2] 

5.  Artificial Neural Network (ANN ) Interpretation of NMR Data 

For obvious economic reasons, there has been a paradigm shift in hydrocarbon exploration and 

development strategies for better utilization of seismic data for reservoir characterization. Discovering 

the complicated and nonlinear relationship between seismic attributes and reservoir properties has 

been a major challenge for working geoscientists. Artificial Neural Network techniques have been 

proposed and proved to be effective in capturing these complex relations and have proven to be an 

effective modelling tool. Let x1 , x2 ,…., xp be the input signals, wk1 , wk2 ,…., wkp are synaptic weights of 

neuron k, wk0 is a bias term, vk is the linear combiner output, f(.) is an activation function, and yk is the 

output signal of the neuron, the mathematical model of the k-th neuron is described as 

𝑉𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗 + 𝑤𝑘0

𝑝

𝑗=1

 

𝑦𝑘 = 𝑓(𝑉𝑘) 

(9) 

The activation function, f (.), defines the output of a neuron in terms of the activity level at its input. 

There are several classes of artificial neural networks structures. The most common structure of ANN is 

known as multi-layer perceptron Feed Forward Neural Networks (FFNN). FFNNs are composed of 

layers of interconnected neurons. Usually, an input layer, a few hidden layers, and an output layer are 

used as shown in Figure 6. The input layer is essentially a direct link to the inputs of the first hidden 

layer. The output of each neuron may be connected to the inputs of all the neurons in the next layer. 

Signals are unidirectional i.e., they flow only from input to output [9]. 
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Figure 6. Multi-layer feed forward neural networks (FFNN) 

The potential of FFNN as a basis for the modeling, classification, and statistical estimation stems 

from the following characteristics: 

• For a sufficient number of hidden units, feed forward neural networks (FFNN) can approximate 

any continuous static input-output mapping to any desired degree of approximation [9, 10]. 

• Due to the modular and feed forward structure, the training of the network is simple and can be 

made to adapt to varying conditions. 

• Number of neurons have selected and weighted within optimum level fitting to available data 

from conventional and NMR. 

The back propagation (BP) algorithm is usually used for (FFNN) training [10]. Although BP is simple, 

the choice of a good learning rate requires some trial and error. Several improved variants of the BP 

algorithms were proposed in the literature, e.g., the RPROP algorithm, Riedmiller and Braun [11], 

Conjugate Gradient, Powell [12], and Levenberge- Marquardt (LM), Hagan and Menhaj [13]. Although 

all these algorithms suffer from sensitivity to the initial value of the weights and biases, the LM was 

shown to be the fastest algorithm for function approximation problems. The LM training algorithm is 

chosen for training the developed neural networks in this study [12, 14]. 

5.1.  Porosity Prediction Using Artificial Neural Network (ANN) 

Porosity is a key petrophysical parameter in formation evaluation. Consequently, new well logging 

techniques are developed to determine accurately formation porosity. Neural networks present an 

alternative approach to estimate porosity [12, 14-16]. Soto et al. (1997) developed a back propagation 

neural network with four layers to predict permeability and porosity from log data with satisfactory 

results [17]. Lim and Kim (2004) used artificial neural network to classify/identify lithofacies and 

predict permeability and porosity from well and they proposed the use of combined fuzzy logic artificial 

neural network to predict porosity and permeability [18]. Fuzzy curve analysis was used to select the 

best inputs for the artificial neural network from the available conventional well log data. Elshafei and 

Hamada (2007) estimated formation porosity and water saturation of shaly sand reservoirs with 

relatively satisfactory result using two separate neural network models from well logging 

measurements [19]. 

5.1.1.  ANN Porosity Prediction Using Conventional Log 

The conventional log consists of 5 measurements: Gamma Ray (GR), bulk density (RHOB), Neutron 

porosity (CNL), Deep and shallow resistivity (RT_D, and RT_S). The NMR data consists of 10 T2 pin 

values. Data from two test wells A and B were combined and split to 60 % training and 40 % testing. A 

neural network consisting of 5 inputs, a single hidden layer of 16 neurons, and an output layer was built. 

The hidden layer consists of a tan-sigmoid function, and the output neuron is a log-sigmoid function. 



G. M. Hamada & M. Abushanab,  IJPGE, Vol. (2023), Article ID: IJPGE-2212052112830, 15 pages 

9 

 

The mean square root error during training (Figure 7) and testing (Figure 8) came to 0.0075 and 0.0102 

respectively. The correlation between the predicted values and targeted values during training came to 

0.912, and during testing 0.892. Figures 7 and 8 illustrates the correlation between predicted porosity 

and core porosity in cases of training and testing. These correlation coefficients are not very high, it may 

be attributed to the high noise level in the input data. 

 

Figure 7. ANN prediction of porosity using conventional log, training performance 

 

Figure 8. ANN prediction of porosity using conventional log, testing Performance 

5.1.2.  ANN Prediction of Porosity Using NMR and Conventional Log 

The data used consists of 5 conventional logs, 10 T2 pins, and the mean value of the pins, the mean 

squared value of the pins, and the maximum value of the pins, a total of 18 parameters. Due to the 

richness of the data, a simple neural network provides an improved performance over the structure 
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used with the conventional log. The neural network consists of a single hidden layer of 8 neurons. The 

hidden neurons use tan- sigmoid function, and the output neuron uses a log-sigmoid function. 

The root of the mean squared errors during training and testing came to 0.0038 and 0.0105 

respectively (0.5). The correlation between the predicted values and targeted values during training 

(Figure 9) came to 0.9653 and during testing to 0.91 (Figure 10). The relatively poor performance is 

mainly due to the small number of core measurements (24 from well A, and 51 from well B, a total of 

only 75 scattered points). 

 

Figure 9. ANN prediction of porosity using conventional & NMR log, training performance 

 

Figure 10. ANN prediction of porosity using conventional & NMR log, testing performance 

5.2.  Permeability Estimation Using Neural Network (ANN) 

The determination of permeability characteristics is labor intensive and quite complicated. 

Empirical models to predict relative permeability from rock and fluid properties have also experienced 

relatively limited success. Hence alternative methodologies for accurate determination of relative 
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permeability characteristics have since been considered [13, 17-20]. Artificial neural network (ANN) 

approach is proposed to predict an accurate permeability. Balan et al. (1995) did comparative prediction 

of the permeability estimation from log data using empirical model, multiple variable regression, and 

artificial neural network [21]. The result shows that multiple regression and neural network techniques 

perform better than the empirical ones with neural network as cited as the best tool. Garrouch and 

Smaoni (1998) estimated tight gas sand permeability from porosity, mean pore size, and mineralogical 

data using a back-propagation neural network model with 8-input neuron and 2-5 hidden layers [15]. 

5.2.1.  Gas Sand Permeability Estimation from Neural Network (ANN) 

Prediction of permeability by neural network (NN) approach needs good input logging data, such as 

NMR data (T2), in addition to conventional logging data (GR, density, Neutron, resistivity). The two wells 

A, B were analyzed to build a NN-based permeability prediction model. 

5.2.2.  ANN Permeability Prediction Using Conventional Log 

Conventional log data from wells A and B were combined and divided into two data sets, a training 

set of 60 % of data, and a test set of 40 % of data. It is preferred to start the prediction of permeability 

using conventional log alone, thereby using Figure 11 as a base line for later assessment of the NMR 

effectiveness. 

The developed NN has five inputs and one hidden layer of 16 neurons. The hidden layer uses tan-

sigmoid activation functions, and the output layer uses log-sigmoid activation function. All inputs were 

normalized between [-1, +1] based on the data available in wells A and B. The permeability was 

normalized on a log scale as pn=(log10 (ptrue)+2)/5.0. The performance of the developed NN on the 

training data is shown in Figure 11, and its performance on the test data is shown in Figure 12. The ANN 

achieves a root mean squared error of 6.8 (4.5% of the full-scale) during training, and 9.14 (6.09%) 

during testing, with correlation coefficient of R =0.975. 

 

Figure 11. ANN prediction of permeability using conventional log, training performance. 
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Figure 12. ANN prediction of permeability using conventional log, testing performance. 

5.2.3.  ANN Permeability Prediction Using NMR and Conventional Log 

The data used consists of 5 conventional logs, 10 T2 pins, plus the mean value of the pins, the mean 

squared value of the pins, and the maximum value of the pins, making a total of 18 parameters. The 

conventional log data and the NMR data from wells A and B were combined and divided into two data 

sets, a training set of 60 % of data, and a testing set of 40% of data. 

Due to the richness of the data, a simpler neural network provided an improved performance over 

the structure used with the conventional log. The neural network here consists of a single hidden layer 

of 8 neurons. The hidden neurons use tan-sigmoid function, and the output neuron uses a log-sigmoid 

function. Figure 13 shows the performance of the 18-input NN on the training data, and Figure 14 shows 

its performance on the test data. It is clear that there is excellent correlation between predicted 

permeability and NMR permeability curves. 

The developed NN achieves a root mean squared error of 4.18 (about 2.8%) and of 4.515 (about 

3.01%) on the training data and test data respectively. These results indicate that the NN manages to 

properly interpolate the test data and achieves almost uniform performance on the entire log data. The 

correlation coefficient came to R = 0.978 and 0.961 during training, and testing, respectively. 
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Figure 13. ANN prediction of permeability using conv. & NMR log, training performance. 

 

Figure 14. ANN prediction of permeability using conv. & NMR log, testing performance. 

6.  Conclusion  

1. NMR derived permeability and, porosity have shown good matching with core tests results and 

BGMR permeability has shown excellent correlation with core permeability. DMR porosity iis 

recommend to be used rather than NMR or Density porosity separately  
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2. FFNN-predicted porosity using NMR and conventional log has an excellent matching with DMR 

NMR porosity in training and in testing sections that indicated an acceptable validation level of NN 

approach.  

3. FFNN-predicted permeability from NMR decay times T2 and conventional logs has shown 

excellent matching with core permeability.  

4. It is recommended to use the developed FFNN model to predict permeability from NMR data in 

other wells.  It is also recommended to use combined artificial intelligence techniques (fuzzy, nonlinear 

algorithms and machine learning) in addition FFNN to get more accurate prediction of porosity and 

permeability of shay sandstone reservoirs.  

Nomenclature 

φ Porosity 
Swi Irreducible water saturation 
Sgxo  Flushed zone gas saturation 
FT Formation tester 
BVI                 Bulk volume irreducible 
OBM Oil base mud 
WBM Water base mud 
PHID Density porosity reading 
RT-D True resistivity 
RT-S Flushed zone resistivity 
NMR Nuclear magnetic resonance  
NN Neural Network 
BP Back propagation training algorithm 
KBGMR Bulk Gas Magnetic Resonance Permeability  
BG Bulk gas volume 
DMR Density magnetic resonance  
FFNN Feed Forward Neural Network 
LM Levenberge-Marquardt training algorithm 
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