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Many ideas have been implemented for image de-noising and some of these techniques act 

properly in noise discarding.  In this paper, a review of some state-of-the-art noise 

suppression methods has been presented. These methods were introduced to develop some 

new strategies to reduce the noise effect from the images by keeping the most important 

characteristics and discarding small noisy coefficients. In addition, these techniques were 

conducted to overcome the performance analysis of the previous approaches in terms of 

acquiring higher Peak Signal to Noise Ratio (PSNR) and to improve the visual quality of 

the images. In this study, six state-of-the-art unique techniques for image de-noising have 

been reviewed and their performances have been analyzed. Results show that de-noising 

based on sparse 3D transform-domain collaborative filtering performs well in comparison 

with other techniques. 

 

1. Introduction 

 Image de-noising is among the essential roles to accurate the 

imperfections produced during transmitting and receiving 

procedures.  Therefore some succeeding processes like 

image analyzing may not be possible until doing suitable 

noise repression techniques to improve the quantitative and 

visual inspection if image.  

      Discarding the noise while keeping the most important 

characteristics of the images is still a challenging problem 

for researchers in image processing and many methods have 

been proposed. Donoho and Johnstone proposed ideal spatial 

adaptation by wavelet shrinkage [1]. X. P. Zhang introduced 

thresholding neural network for adaptive noise reduction [2].  

Noorbakhsh Amiri Golilarz and Hasan Demirel suggested to 

use thresholding neural network (TNN) based noise 

reduction with a new improved thresholding function [3]. 

Translation invariant wavelet based noise reduction using a 

new smooth nonlinear improved thresholding function  is 

introduced in a study conducted by Noorbakhsh Amiri 

Golilarz et al., in 2017 [4]. In 2017 Gabriela Ghimpe¸teanu 

et al., proposed a decomposition framework for image de-

nosing algorithm [5]. Jiefei Wanget al., developed a residual 

based kernel regression method for image de-noising [6].  

Image super-resolution via sparse representation is 

introduced by Jianchao Yang et al., in 2010 [7]. Image de-

noising based on improved wavelet threshold function for 

wireless camera networks and transmissions is suggested by 
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Xiaoyu Wang et al., in 2015 [8]. Kostadin Dabov et al., 

proposed image de-noising by sparse 3D transform-domain 

collaborative filtering in 2007 [9]. Space scale adaptive noise 

reduction based on thresholding neural network was 

conducted in a study proposed by X. P. Zhang in 2001 [10]. 

     In this research, we presented a review of some state-of-

the-art noise repression methods. These methods were 

proposed to develop some new strategies to obtain desired 

de-noised images by discarding the noise from the images 

while keeping the fine details. Here performance analysis 

and visual quality of several state-of-the-art image de-

noising methods have been analyzed and also the 

experimental results have been compared.  

2. Noise 

An image can be contaminated by noise during receiving 

and transmitting processes. This noise can be as Additive 

White Gaussian Noise (AWGN) which can corrupt the 

image and leads toward diminishing its visual quality.  Eq.(1) 

denotes the effect of noise on original images.   

𝑣 = 𝑝 + 𝜀                                                                           (1) 

where 𝑝 is the noise free image, 𝜀 is the noise which it can 

be Additive White Gaussian Noise (AWGN) with zero mean 

and standard deviation of 𝜎 and 𝑣 is the noisy image.  

      The main objective in image de-noising is discarding the 

noise from images to improve the resolution, obtain higher 
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Peak Signal to Noise Ratio (PSNR) and minimize the Mean 

Square Error (MSE) [11]. 

3. State-of-the-art Image De-noising Techniques 

A. A Decomposition Framework for Image De-noising 

Algorithms 

     In this technique, Gabriela Ghimpeteanu et al., suggested 

to use a decomposition framework for noise suppression [5]. 

In this proposed technique, the constituents of the image 

should be calculated properly to be utilized in a moving 

frame encrypting its local geometry [5]. To conserve 

gradients directions and level lines, the constituents of the 

image must be de-noised well in the moving frame [5].  

     Regarding to a scaled variant 𝜌J of J , it is possible to 

parametrize its  diagram using the Eq. (2)  

 𝜕: (x, y) → (x, y, 𝜌J (x, y))                                                 (2)  

where 𝜌 ∈[0, 1], A is the surface in 𝑅3 , (x, y) is the typical 

norm system of 𝑅2 , J : 𝜑 ⊂𝑅2→ R is a gray-level image, 𝐽𝑥 

is derivative of J in x direction, 𝐽𝑦 is derivative of J in y 

direction and finally, the gradient of J is denoted by ∇J [5]. 

     Figure 1 shows the orthonormal moving frame ( 𝑍1 , 𝑍2, 
N) [5]. In this figure, the vector field Z1 denotes to the tangent 

of the surface A signifying the steepest slope direction at 

every specific location in the surface A, the vector field 𝑍2 is 

tangent to the surface A signifying the lowest slope direction 

at every specific location in the surface A and N is normal to 

the surface A.  𝑍1  , 𝑍2 can be obtained by Eq. (3) [5]  

 𝑍1  =    
𝑑𝜕(𝒛𝟏 )   

‖𝑑𝜕(𝒛𝟏 )‖2
,  𝑍2  =    

𝑑𝜕(𝒛𝟐 )   

‖𝑑𝜕(𝒛𝟐 )‖2
                                     (3)                                                                                                    

where  𝑑𝜕  denotes to the differential of 𝜕.  

      Additionally, figure 1 shows the local geometry of gray 

level image with the encrypting of moving frame. In this 

figure, left image is the original gray-level image and 

( 𝑍1 , 𝑍2) is the moving frame and also we can observe the 

gradient direction and the level-line of the image at points p 

and q of the image domain 𝜑 [5]. Besides, right image shows 

the orthonormal moving frame ( 𝑍1 ,𝑍2 , N) signifying the 

steepest and lowest slopes direction of the surface A [5]. 

      These vector fields  𝑍1 ,𝑍2, N can be expressed in details 

by the matrix field K using Eq. (4) [5] 

 

 

       

 

 
Figure 1. The Local Geometry of A Gray-level Image Combined with Encoding of Moving Frame [5]. 
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where the reference points of the vector fields  𝑍1  , 

 𝑍2 and 𝑁 are in the first, second and third columns, 

respectively.  

      In Figure 1, regarding to  𝑒1  = (1, 0, 0),  𝑒2  = (0, 1, 0), 

 𝑒3  = (0, 0, 1) which are the orthonormal frame of (𝑅3, ‖ ‖2), 

the K in Eq.(4) is the frame change field which varies from 

( 𝑒1 ,  𝑒2 ,  𝑒3 ) to ( 𝑍1 ,𝑍2, N). It is clear that the 𝑅3numerical 

quantitative functions constituents (0, 0, J) can be referred to 

(𝑙1, 𝑙2, 𝑙3)  in the new frame which is formulated by Eq. (5) 

[5] 

(
0
0

 𝐽
) =𝐾 (

𝑙1

𝑙2

 𝑙3
)                                                                     (5) 

     The process of obtaining output de-noised image is as 

the following [5]: 

Step 1. Apply suitable de-noising technique to reduce the 

effect of noise while keeping the most important 

characteristics of image.   

Step 2. Obtain J constituents (𝑙1, 𝑙2, 𝑙3) for different scalars 

of 𝜌. 

Step 3. Apply same suitable de-noising technique to the 

existing constituents to get the de-noised constituents 

(𝑙1
𝑑𝑒𝑛

, 𝑙2𝑑𝑒𝑛, 𝑙3𝑑𝑒𝑛) 

Step 4. Apply the inverse frame change matrix field (𝜔) to 

the new de-noised constituents: 

(
𝑙1𝑑𝑒𝑛
 𝑙2𝑑𝑒𝑛

 𝑙3𝑑𝑒𝑛
) =𝐾−1 (

𝐽1𝑑𝑒𝑛𝜔
 𝐽2𝑑𝑒𝑛𝜔

 𝐽3𝑑𝑒𝑛𝜔

)                                               (6) 

where components 𝐽1𝑑𝑒𝑛𝜔, 𝐽2𝑑𝑒𝑛𝜔 and 𝐽3𝑑𝑒𝑛𝜔are the first, 

second and third component which are marked by 𝐽𝑑𝑒𝑛𝜔 

Step 5. Get output de-noised image 𝐽𝑑𝑒𝑛  
Step 6. Compare 𝐽𝑑𝑒𝑛  and 𝐽𝑑𝑒𝑛𝜔  with based on PSNR 

values. 



Amiri Golilarz et al. - Comput. Res. Prog. Appl. Sci. Eng. Vol. 05(01), 10-15, March 2019 

84 11 

B. A Residual-Based Kernel Regression Method for Image 

Denoising 

     Wang et al., in 2016 proposed a residual-based method 

for removing the noise from images contaminated by 

Gaussian noise [6]. Combination of bilateral filter and 

structure adaptive kernel filter as well as the image residuals 

results in repressing the noise effectively while the excellent 

features, such as edges, can be preserved [6]. 

     The procedure of this technique is as follows: 

Step 1. Obtain the reconstructed image  𝑉2  by restoring the 

noisy image g with bilateral filter utilizing Eq. (7) 

𝑒̂𝑖=𝑣( 𝑝𝑖 )-𝑉( 𝑝𝑖 ), i=0,1,…,L                                             (7) 

where 𝑉( 𝑝𝑖 ) is the pixel value at point  𝑝𝑖  of the noise free 

image, L is the number of pixels, 𝑣( 𝑝𝑖 ) is pixel value at 

point  𝑝𝑖  of noisy image and 𝑒̂𝑖 is image residual. 

Step 2. Setting a standard for image residual according to Eq. 

(8) 

Q( 𝑝𝑖 )=∑ 𝑒̂𝑖𝑤∈ 𝑀𝑛1  ( 𝑝𝑖 )
 , i=1,…,L                                     (8) 

where  𝑀𝑛1  refers to the neighbor of  𝑝𝑖  with radius of 𝑛1. 

Step 3. Tagging abnormal points using Eq. (9) 

𝑍1 ( 𝑝𝑖 ) = {
1, Q(𝑝𝑖 ) < 𝜑1 𝑜𝑟 Q( 𝑝𝑖 ) > 𝜑2 
0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                    (9) 

where 𝜑  value is used for tagging intensity [6]. 

      If noise still exists, for a tagged residual figure 𝑍1 ( 𝑝𝑖 ), 
it should be filtered again as Eq. (10) 

 

 𝑍2 ( 𝑝𝑖 ) = {
1,  ∑  𝑍1 (t) > 𝜏1 , 𝑍1 ( 𝑝𝑖 ) = 1t∈ 𝑀𝑛2  ( 𝑝𝑖 )  

 

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

 

where 𝜏1 is a defined threshold and  𝑀𝑛2  refers to the 

neighbor of  𝑝𝑖  with radius of 𝑛2. 

     This process continues to decrease the noise distribution 

in the tagged image (Eq. (11)). This step results in getting the 

binary image. 

 𝑍3 ( 𝑝𝑖 ) = {
1,  ∑  𝑍2 (t) > 𝜏2 ,  𝑍2 ( 𝑝𝑖 ) = 1t∈ 𝑀𝑛3  ( 𝑝𝑖 )  

 

0,                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (11) 

      Specifically, let V1 be de-noised image using structure 

adaptive kernel method and V2 be the de-noised image by 

bilateral filter. Then the output image V3 can be obtained 

using Eq. (12) [6] 

 𝑉3 (𝑝)= 𝑍3 (𝑝) 𝑉1 (𝑝)+(1- 𝑍3 (𝑝))  𝑉2 (𝑝)                       (12) 

      Additionally, to remove the image edges it is better to 

use the improved smoothed version of Eq. (12) according to 

the following formula.    

𝑍′3( 𝑝𝑖 ) =

{
0.3,  ∑  𝑍3 (𝑡) ≠ # 𝑀2  ( 𝑝𝑖 ) ,  𝑍3 ( 𝑝𝑖 ) = 1𝑡∈ 𝑀2  ( 𝑝𝑖 )  

 

0,                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (13)      

where # 𝑀2 refers to the quantity of components of set  𝑀2  
Step 4. Suppress the noise from pixels at point  𝑝𝑖  of noisy 

image v which satisfies the first restriction of Eq. (11) and 

get  𝑉1  by employing the structure adaptive based method. 

Step 5. Obtain reconstructed noise free image  𝑉3 according 

to the following formula: 

 𝑉3 (𝑝)=𝑍
′
3(𝑝) 𝑉1 (𝑝)+(1-𝑍′3(𝑝))  𝑉2 (𝑝)                       (14) 

C. Image super resolution via sparse representation 

      In this study, Yang et al., introduced sparse signal 

representation for a single-image super resolution. This 

study shows that it is possible to define the patches of an 

image as a sparse linear combination of components from a 

suitably chosen over-complete dictionary. Regarding to this 

observation, a sparse representation for each patch of the 

low-resolution input is needed to utilize the coefficients of 

this representation to produce the high-resolution output. 

Training two dictionaries together for the both high and low 

resolution patches of an image provides us with compelling 

the sparse representations resemblance among the patches of 

an image with high and low resolution regarding to their own 

dictionaries. Then it is possible to obtain a high resolution 

patch of an image by employing the sparse representation of 

a low resolution patch of an image with the dictionary of the 

high resolution patch of an image. The whole procedure to 

obtain a super resolution image is as following [7]: 

Step 1. Train  𝑈ℎ and  𝑈𝑙  dictionaries. 

Step 2. For each patch z of Z   

Step 2.1. Calculate mean pixel value M of patch z 

Step 2.2. Find a solution for the following optimization 

problem. 

𝑚𝑖𝑛𝛾‖𝑈𝛾 − 𝑧̃‖
2

2
+ 𝜌‖𝛾‖1                                              (15) 

Step 2.3. Get the high-resolution patch k =  𝑈ℎ  𝛾
∗. Utilize 

the patch k + M into a high-resolution image  𝐾0 . 
Step 3. Obtain the closest image to  𝑋0  satisfying the 

reconstruction constraint based on gradient descent as Eq. 

(16) 

𝐾∗ =𝑎𝑟𝑔𝑚𝑖𝑛𝑘‖𝑆𝐻𝐾 − 𝑍‖
2
2 + 𝑐‖𝐾 −  𝐾0 ‖

2
2
               (16) 

Step 4. Generate 𝐾∗ as the super resolution image.  

      Here K, Z, k and z are high resolution image, low 

resolution image, high resolution image patch and low 

resolution image patch, respectively.  U is dictionary for 

sparse coding ( 𝑈ℎ  is dictionary for high resolution patch of 

an image and  𝑈𝑙  is dictionary for low resolution patch of an 

image) and S is down sampling operator. H is blurring filter. 

In addition, to stable the sparsity of the solution and accuracy 

of the approximation to z, parameter 𝜌 is used. 𝛾  is the sparse 

representation [7]. 

D. Image De-noising Based on Improved Wavelet Threshold 

Function for Wireless Camera Networks and Transmissions 

      In 2014, Wang et al., proposed wavelet based threshold 

function for image de-noising. This function is given by Eq. 

(17) [8] 

q={
𝑠𝑖𝑔𝑛(𝑓) [|𝑓| − 𝑠𝑖𝑛(

𝜋

2
|
𝜃

𝑓
|
𝑚

) 𝜃] , |𝑓| > 𝜃

0                                                   , |𝑓| < 𝜃
                   (17) 

where q is the threshold function, f is wavelet coefficient, m 

is the adjustment parameter and 𝜃 is threshold value. 

     The proposed method can be processed as follows [8]:  

12 
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Step 1. Add Gaussian White Noise 

Step 2. Decompose the noisy image 

Step 3. Apply improved thresholding function to de-noise 

the  image 

Step 4. Reconstruct image with wavelet coefficients 

obtained from the proposed wavelet based threshold 

function. 

E.  Image De-noising by Sparse 3D Transform-domain 

Collaborative Filtering 

      In this study, Dabov et al., proposed a unique approach 

for discarding the noise from images in transform domain 

based on an enhanced sparse representation [9]. Assembling 

segments of the similar two dimensional (2D) image into 

three dimensional (3D) group results in sparsity 

improvement. To handle these 3D groups, a cooperative 

filtering should be developed. To do so, the following 

sequential steps are needed: three dimensional 

transformation of a group, shrinkage of the transform 

spectrum and inverse 3D transformation [9]. These 

procedures will result in a three dimensional estimate 

including the jointly filtered grouped image blocks [9]. Noise 

diminishing provides us with revealing the finest details 

distributed by grouped blocks and also conserving most 

important singular characteristics of a particular block by 

cooperative filtering. Then filtered blocks will get back to 

their initial posture. Subsequently, a lot of distinctive 

estimates can be acquired for each individual pixel due to the 

overlapping process of the blocks. A crucial enhancement 

will be obtained using a specific improved cooperative 

wiener filtering. This noise reduction strategy is 

implemented in 2 stages as follows [9]: 

Stage 1: Basic estimate. Firstly, block-wise estimates: in the 

noisy image it is necessary to do grouping and collaborative 

hard thresholding for each block. In grouping, it is needed to 

find blocks resembling to the presently processed one and 

then collect them in three dimensional groups. In 

collaborative hard thresholding, we should apply a 3D 

transform to the formed group, perform hard thresholding to 

attack the noisy components and diminish the noise, apply 

inverse 3D transform to get estimation of all grouped blocks 

and finally return these estimations to their initial posture [9].  

      Secondly, aggregation: The basic estimate of the true 

image should be computed using weighted averaging all of 

the acquired overlapping block-wise estimates [9]. 

Stage 2: Final estimate. To perform enhanced grouping and 

cooperative wiener filtering exploiting the basic estimate [9].  

      Firstly, block-wise estimate: For each individual block 

we should do grouping and collaborative wiener filtering. In 

grouping, Block Matching (BM) should be utilized during 

the basic estimate to discover the position of the blocks 

resembling to the most recent processed one. Employing 

these positions provides us to form noisy image and basic 

estimate. In collaborative wiener filtering, 3D transform is 

employed on both groups namely, noisy image and basic 

estimate. Wiener filtering combined with energy spectrum of 

basic estimate acts as the true energy spectrum on the noisy 

image. Applying the inverse 3D transform on the filtered 

coefficients leads to getting estimates of all grouped blocks 

then returning these estimates to their initial stage [9].  

      Secondly, Aggregation: aggregate all of the acquired 

estimates with a weighted average to get a final estimate of 

the true image [9]. 

      The mentioned algorithm is shown in Figure 2. 

 

 

 
Figure 2. Flowchart of Image De-noising with Sparse 3D Transform-domain Collaborative Filtering [9]. 

F. Space Scale Adaptive Noise Reduction Based on TNN 

      This technique is adaptive because the two dimensional 

discrete wavelet transform (2D-DWT) is adopted as the 

linear transform in Thresholding Neural Network (TNN) and 

the noisy image acts as the input of this TNN [10]. In this 

structure, the input is noisy image and the transform can be 

orthogonal wavelet transform. Applying this linear 

transform results in wavelet coefficients contaminated by 

Gaussian noise. Then wavelet thresholding function can be 

employed to get noise reduced components. Finally, using 

inverse wavelet transform, it is possible to acquire desired 

reconstructed image.  

      Data stream with one dimensional coefficient including 

the space-scale data of two dimensional images should be 

prepared in order to get space scale adaptive noise repression 

image [10]. In this stage, the components of two dimensional 

discrete wavelet transform (2-D DWT) are reorganized as a 

series of one dimensional component in spatial order then the 

adjoining samples show exactly the same local areas in the 

original image [10]. Figure 3 shows this rearrangement 

process of an 88 transformed image properly [10]. The 

13 
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discrete wavelet transform of an image includes of 4 

frequency channels namely, HH, HL, LH and LL which “H” 

refers to high frequency and “L” refers to low frequency. The 

decomposition levels can be done in LL channel as it is 

shown in Figure 3 (a). As it is shown in Figure 3 (b), all of 

these frequency channels contain different numbers which 

are called spatial order of two dimensional components 

referring to their specific positions in Figure 3 (a) [10]. 

 4. Experimental Results 

      In this part a comparison between some state-of-the-art 

image de-noising methods has been done to understand their 

performance analysis and visual quality better in terms of 

discarding the noise from images. Sym4 wavelet with  

 

 

 
(a)                                        (b) 

Figure 3. Data Preparation of Image [10]. 

four level of decomposition has been used in both 

experiments. In the first experiment, 7 test images have been 

used with the size of 256× 256 and standard deviations of 5, 

10, 15, 20, 25. 

      Table 1 shows the performance of 6 state-of-the-art de-

noising techniques for average of 10 experiments. In this 

table, for each standard deviation, top left: image de-noising 

based on improved wavelet threshold function for wireless 

camera networks and transmissions, top right: space scale 

adaptive noise reduction based on TNN , mid left: a residual-

based kernel regression method for image de-noising , mid 

right: image super resolution via sparse representation , 

bottom left: a decomposition framework for image de-

noising algorithms and bottom right: image de-noising by 

sparse 3D transform-domain collaborative filtering .In most 

of the tests, we observe the superiority of de-noising by 

sparse 3D transform-domain collaborative filtering over 

other de-noising techniques.  

      Besides, in the second experiment, we used ‘Lena’ image 

with the size of 256× 256 and standard deviation of 15. In 

this experiment, we compared the visual quality of different 

de-noising methods. In Figure 4, (a) is de-noised image using 

improved wavelet threshold function for wireless camera 

networks and transmissions, (b) is de-noised image based on 

space scale adaptive noise reduction using TNN, (c) is   de-

noised image using residual-based kernel regression method, 

(d) is de-noised image based on super resolution via sparse 

representation, (e) is a de-noised image using decomposition 

framework and (f) is de-noised image using sparse 3D 

transform-domain collaborative filtering. As we can see in 

this figure, de-noising based on sparse 3D transform-domain 

collaborative filtering outperforms other alternative methods 

available in the literature.  

  

 

Table 1. PSNR results for different state-of-the-art de-noising methods for average of 10 experiments. 

Image 𝜎=5 𝜎=10 𝜎=15 𝜎=20 𝜎=25 

C.man 

38.29 38.53 34.18 33.78 31.91 32.36 30.48 30.54 29.45 29.81 

38.36 37.42 34.24 34.07 32.01 32.31 30.50 30.36 29.78 29.22 

38.55 39.02 34.78 35.12 33.45 33.65 32.12 32.85 29.33 29.98 

 

House 

39.83 39.99 36.71 36.87 34.94 35.15 33.77 33.83 32.86 32.95 

40.12 39.45 36.67 36.76 34.91 34.12 33.90 33.93 32.82 33.07 

40.54 41.10 38.12 38.42 37.23 37.76 35.49 35.96 34.28 34.69 

 

Peppers 

38.12 38.30 34.68 34.67 32.70 32.94 31.29 31.34 30.16 30.43 

38.35 38.65 34.82 34.63 32.87 32.68 31.39 31.28 29.78 30.13 

38.46 38.86 37.12 37.89 35.42 36.21 33.20 33.85 32.35 32.80 

 

Lena 

38.72 38.82 35.93 36.02 34.27 34.42 33.05 33.14 32.08 32.22 

38.85 38.42 35.90 35.87 34.21 34.32 33.08 33.09 32.54 32.17 

38.90 39.24 38.69 38.97 37.16 37.96 36.09 36.68 34.58 34.89 

 

Barbara 

38.31 38.34 34.98 32.89 33.11 33.30 31.78 29.98 30.72 28.99 

38.54 38.64 35.23 35.05 33.32 32.01 32.10 31.84 31.56 30.15 

38.78 39.04 37.14 37.87 35.47 32.81 33.17 32.35 32.06 32.67 

 

Boats 

37.28 37.47 33.92 33.87 32.14 32.29 30.88 30.98 29.91 30.03 

37.36 37.65 33.91 33.78 32.09 32.36 30.81 30.72 29.45 29.81 

37.85 38.12 35.53 36.24 35.11 35.80 33.45 33.05 31.46 31.95 

 

Hill 

37.14 37.30 33.62 32.56 31.86 32.05 30.72 30.98 29.85 29.96 

37.45 37.18 33.67 33.53 31.85 31.93 30.68 30.56 30.12 29.64 

37.38 38.31 35.15 36.12 34.46 35.21 33.29 34.11 32.37 32.86 
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    a(PSNR=34.15)            b(PSNR=34.35)        c(PSNR=34.10) 

   
     d(PSNR=34.27)          e(PSNR=37.01)         f(PSNR=37.88) 

Figure 4. Lena Image De-noising for Different State-of-the-art 

Techniques for Standard Deviation of 15. 

5. Conclusion 

      Researchers proposed many methods to discard the noise 

from the images where some of them perform well in 

removing the noise and obtaining output de-noised images.  

In this study, we introduced a review of some state-of-the-art 

noise reduction methods. These methods were developed to 

keep the most significant features of images and discard the 

noisy components. Performances of these techniques show 

their superiority over previous published methods in image 

de-noising. In this corresponding, a comparison has been 

done among some of the state-of-the-art image de-noising 

methods and results indicated the  superiority of sparse 3D 

transform-domain collaborative filtering over other 

alternatives in the literature.  
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