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Abstract 

Remote sensing method is a powerful tool for water quality monitoring and modeling via analyzing satellite images 

of a widespread area. This study presents the development of regression models for estimating and mapping 

concentrations of total suspended sediment (TSS) over the coastal waters of Langkawi Island, Malaysia from 

Advanced Land Observation Satellite (ALOS) images. Two ALOS images and nearly contemporaneous in situ 

measurements of TSS were utilized. The digital numbers for each visible band corresponds to the sea-truth positions 

were identified and were transformed into reflectance values. The relationships were investigated between TSS 

concentrations and reflectance of ALOS bands. The non-linear relationship between in-situ TSS and reflectance 

combinations of the three visible bands demonstrated the highest correlation with a low root-mean-square error 

(RMSE ≈ 3.52mg/l) and high correlation coefficient (R2 = 0.91). The results confirm that the proposed algorithm 

obtained from ALOS data is successful for TSS mapping of the coastal waters of Langkawi Island, Malaysia.  
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1. Introduction 

Water pollution problem becomes increasingly critical nowadays. Water, as one of the most precious 

natural resources, serves as the lifeblood that sustains development in any society. With decrease in water 

resources, it is essential to protect water resource and properly manage environmental activities to sustain 

the quality of life on earth. The condition of surface water in the estuary of streams, reservoirs, lakes, and 

oceans is a key environmental indicator that illustrates the overall health of the coastal ecosystem. 

According to Guan et al. (2011), concentration of suspended sediment, which causes non-point source 

pollution, is one of the most significant water quality parameters in coastal waters. Suspended substances, 

used as carriers to store the agents of pesticides to absorb nitrogen, phosphorus, and organic materials, can 

be indicators on levels of pollution (Park & Latrubesse, 2014; W. Zhou et al., 2006). Therefore, 

controlling and assessing the concentration of suspended material in coastal waters is crucial. 
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Zhou et al. (2006) demonstrated that it is difficult to obtain synoptic information on water quality from 

a routine in-situ monitoring network. In coastal waters, typical measurements of water quality require in-

situ sampling as well as time-consuming and expensive laboratory effort (Bresciani et al., 2012; Matarrese 

et al., 2011). Furthermore, conventional measurements are not enough to highlight regional and global 

water quality issues and address water quality distribution patterns in bodies of water (Asadpour et al., 

2011; H. Lim et al., 2010). Hence, the hardship of successive and synoptic water quality sampling is an 

obstacle to water quality monitoring, forecasting, and management (Shafique et al., 2001).  

Remote sensing is an appropriate approach to conduct an effective water resources monitoring program 

(Bresciani et al., 2012). Remote sensing has been used broadly for water studies and has played an 

influential role in environmental management strategies and water quality assessment. Trends in the 

coastal environment can be evaluated through remotely-sensed TSS without the need of sampling in situ. 

Several investigations have been executed on the effectiveness of remotely sensed data to solve the 

deficiency of conventional techniques (Kabbara et al., 2008; H. Lim et al., 2011; Long & Pavelsky, 2013; 

Massi et al., 2011; Matarrese et al., 2011; Nagamani et al., 2012; Randolph et al., 2008; Zawada et al., 

2007). Since the 1970s, data from satellites have been employed for remote sensing studies of suspended 

sediments (Hellweger et al., 2004). Satellite imagery has been extensively utilized for coastal water 

quality inspections (Kabbara et al., 2008; Matarrese et al., 2011). 

The relationship between concentrations of water quality parameters and satellite data has been studied 

for several decades (Bresciani et al., 2012; Matarrese et al., 2011), and various model-based estimation 

algorithms have been produced. Two different methods namely inversion of semi-analytical modeling, 

and empirical analysis helped to create these algorithms (Giardino et al., 2007). Analytical models involve 

inverting four relationships to find out water quality parameters from the remote sensed data, in 

accordance with the order of the water quality parameters, the bulk Inherent Optical Properties, the 

specific Inherent Optical Properties, the Top of Atmosphere radiance and the Apparent Optical Properties. 

In empirical techniques, regression approaches are widely used and the algorithms were established in 

reliance on the water reflectance model, a function of the inherent optical properties of water. This 

approach is based on developing multivariate regressions between the ground measurement water quality 

parameters and the remotely sensed reflectance data. Therefore, to correlate water quality with remote 

sensing measurements, different models have been developed. The regression analysis of satellite data 

and simultaneous measurements of ground observation data has been the common practice in remote 

sensing of coastal waters. Previous researches have presented that reliable empirical relationships can be 

created between ground observations of suspended sediments and satellite (Abdullah et al., 2002; 

Bruzzone & Melgani, 2005; Hariyanto et al., 2011; H. Lim et al., 2011). Hakvoort et al. (2002) used 

regression models that do not need any complementary ground data. They applied a matrix inversion 

technique, required specific inherent optical properties, and reflectance spectra to calculate concentrations 

of water components. In this research, a multispectral regression algorithm is derived from water 

reflectance model, which is related to the inherent optical properties of water. These features can then be 

connected to the concentration of total suspended sediment (TSS).  

The objective of this study is to explore the application of the recently proposed algorithm for 

determining the TSS concentration that is conducted using high resolution ALOS imagery and in-situ data 

of the coastal waters of Langkawi Island. The algorithm, developed in this study, has been determined 

from the reflectance model for TSS. Eventually, the algorithm was applied to create the distribution TSS 

concentration maps. 

2. Study area 

In this study, the southern, western and northwestern coastal waters of Langkawi Island are 

investigated. Langkawi Island, is located in the northwest coast of Peninsular Malaysia, close to the 

border of Thailand and is located approximately at latitude 6° 5’N to 6° 35’N and longitude 99° 35’E to 

99° 55’E  (Figure 1). The island has an area of 362 km2 and it has become an attractive destination for 

both domestic and international tourists in recent years. Nevertheless, agriculture and industry are 
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reported to be the leading potential source of island’s water pollution (Jordao et al., 2002). The estuarine 

and coastal areas of Langkawi Island are the locations where a great amount of sediment is entered into 

the ocean system via terrestrial runoffs, rivers, and leachates carrying chemicals originated from 

numerous urban areas. This is because of the quick growth of the district through development of the 

industrialization zone along with the raise in population. Commercial organizations such as resorts, 

hotels, shopping malls, marine recreational facilities, and jetties have been advanced along the island’s 

shoreline to support the increasing number of visitors. This huge development instantly influences marine 

ecosystem productivity and leads to contamination in the seaside and neighboring areas (Kamaruzzaman 

et al., 2010). 

 

 

 

Fig. 1. The location of study area in the northwest coast of Peninsular Malaysia (adapted from Google Earth). 

 

3. Methodology 

3.1 Satellite data 

An ALOS Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) tool was employed as 

the imaging sensor system to measure TSS concentration in the coastal waters of Langkawi Island, as 

shown in the study area. The satellite images were acquired on 13.01.2008 and 18.01.2010. The ALOS 

was become operational on 26 January 2006. The ALOS possesses two optical sensors: Panchromatic 

Remote-sensing Instrument for Stereo Mapping (PRISM) for digital elevation mapping and AVNIR-2 for 

accurate land coverage monitoring. The AVNIR-2 is a visible and near infrared radiometer that is utilized 

to observe regional environments, such as coastal zones, water bodies, and lands. AVNIR-2 was 

introduced after AVNIR, which was on board the Advanced Earth Observing Satellite launched in August 

1996. The instantaneous field-of-view is the principal enhancement of AVNIR-2 over AVNIR. 

Furthermore, AVNIR-2 supplies 10 m of spatial resolution images, an upgrade over the 16-m resolution 

of AVNIR in the multi-spectral region (H. S. Lim et al., 2013). The details of ALOS are expressed in 

table 1, and the raw ALOS AVNIR-2 satellite scene is illustrated in figure 2. 
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Table 1. Details of ALOS, AVNIR-2 utilized in this research (H. Lim et al., 2009) 

General Features Details 

Launch date 26 January 2006 

Launch site Tanegashima Space Centre, Japan 

Design life 3-5 years 

Repeat cycle 46 days 

Altitude 691.65 km 

Number of bands 4 

Wavelength Band 1 (Blue)                420-500 nm 

 Band 2 (Green)             520-600 nm 

 Band 3 (Red)                610-690 nm 

 Band 4 (Near Infrared)  760-890 nm 

Swath width 70 km 

Spatial resolution 10 m 

 

 

 

Fig. 2. Raw satellite image. 

 

3.2 In-Situ data collection 

The simultaneous complementary in-situ water samples were acquired from a boat as the ALOS 

passed over the study area. The collected samples were stored in polyethylene bottles. The sampling 

locations were cautiously chosen to include a wide range of TSS concentrations and to be representative 

of the study areas. The water samples were filtered through 0.45 μm nuclepore ultracellulose membrane 

filters and analyzed to calculate the TSS concentrations. The standard method developed by Strickland 

and Parsons (1972) is used to carry out the analysis. A handheld global positioning system (GPS) is used 

to determine the sampling locations. The water sampling points are indicated in figure 3. The locations 

and statistical results of the calculated value of TSS from collected water samples of the coastal waters of 

Langkawi Island on 13.01.2008 and 18.01.2010 are shown in table 2. The measured TSS concentrations 

ranged from 70 mg/l to 120 mg/l. 

 

 



 M. Moussavi Alashloo et al./ J.E.S.T. (1)1 2019, 1–15 5 

3.3 Optical model of water  

Remote sensing reflectance plays an important role in optical water studies (Asadpour et al., 2012; 

Syahreza, Jafri, et al., 2011). Water-quality surveys based on remotely sensed data are normally centred 

on computing the radiance from the water column and the concentrations of water quality exiting toward 

the sensor. The reflected energy emitted by water bodies is especially dependent on the inherent optical 

properties of water such as the backscattering coefficient and the absorption coefficient.  

Remote sensing reflectance, Rrs unitless, is related to the irradiance reflectance just beneath the water 

surface, Rird (Doxaran et al., 2002), and is measured as:        

   

𝑅𝑖𝑟𝑑 =
(1−𝜌)(1−𝜎)𝑅𝑟𝑠

𝑛2(1−𝑥𝑅𝑟𝑠𝑅)𝑄
                                                                                                                               (1) 

 

where    σ   = air-water Fresnel reflection at the interface 

             ρ  = internal Fresnel reflectance 

             n = refractive index (1.34) 

             x = water-air reflection.  

 

Q is the upwelling irradiance to upwelling radiance ratio (in sr), which would be  if the upwelling 

radiance distribution were isotropic, but may vary between approximately 3.1 and 5.6 (Doxaran et al., 

2002). According to Doxaran et al. (2002), equation (1) can be approximated as: 

 

Rrs = 0.182
Rird

Q
                                    (2)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Location of sampling stations in the Langkawi Island coastal waters on (a) 13.01.2008; (b) 18.1.2010. 

 

 

 

 

 

(a) (b) 
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Table 2. Location of sampling sites and measured TSS concentrations on  (a) 13.01.2008; (b) 18.01.2010. 

(a) 

Site longitude latitude TSS (mg/l) Site longitude latitude TSS (mg/l) 

1 99˚41'9.23'' E 6˚19'14.77'' N 95 8 99˚46'12.26'' E 6˚15'55.05'' N 79 

2 99˚41'22.21'' E 6˚18'46.09'' N 90 9 99˚46'52.69'' E 6˚16'44.49'' N 86 

3 99˚41'40.27'' E 6˚16'46.23'' N 81 10 99˚48'16.09'' E 6˚17'42.98'' N 85 

4 99˚40'50.73'' E 6˚15'47.68'' N 75 11 99˚48'38.29'' E 6˚18'25.93'' N 91 

5 99˚42'30.91'' E 6˚15'7.17'' N 72 12 99˚48'40.78'' E 6˚17'11.68'' N 98 

6 99˚43'41.2'' E 6˚15'4.47'' N 85 13 99˚50'14.56'' E 6˚17'49.3'' N 119 

7 994˚4'44.98'' E 6˚15'8.29'' N 78 14 99˚50'22.41'' E 61˚8'16.64'' N 102 

 

(b) 

Site longitude latitude TSS 

(mg/l) 

Site longitude latitude TSS (mg/l) 

1 99˚40'48.21''  E 6˚31'31.47''  N 89 7 99˚38'27.63'' E 6˚23'13.99'' N 88 

2 99˚39'42.78''  E 6˚30'4.47''   N 105 8 99˚37'37.8''   E 6˚21'59.4'' N 90 

3 99˚40'57.31''  E 6˚28'43.5''   N 78 9 99˚38'42.96'' E 6˚20'16.68'' N 85 

4 99˚38'34.31''  E 6˚28'57.9''   N 72 10 99˚42'42.28'' E 6˚19'32.83'' N 112 

5 99˚40'4.23''   E 6˚25'58.72'' N 82 11 99˚42'45.17'' E 6˚16'57.3'' N 109 

6 99˚37'22.49'' E 6˚25'15.38'' N 76 12 99˚42'7.73''   E 6˚15'8.49'' N 87 

 

The irradiance reflectance 𝑅𝑖𝑟𝑑(λ) just below the water surface is (Kratzer et al., 2008; Siddorn et al., 

2001):  

 

 𝑅𝑖𝑟𝑑(λ) = 0.33
𝑏𝑤(λ)

𝑎(λ)
                                                                                                                                 (3)  

 

where λ represents the spectral wavelength, bw denotes the backscattering coefficient, and a refers to the 

absorption coefficient. The method to derive the equation 3 is described in detail in our prior article (H. 

Lim et al., 2010). The inherent optical properties of water are determined by the water content. The 

contributions of the individual components to the overall properties are strictly additive (Gallegos & 

Correll, 1990). In a case including three water-quality components, namely, suspended sediment P, 

yellow substance Y, and chlorophyll C, the simultaneous equations for the three channels (λ1, λ2, and λ3) 

can be demonstrated as (H. Lim et al., 2010): 

 

𝑅𝑟𝑠(𝜆1) = 𝑅1 =
𝑐

𝑄

[0.5𝑏𝑏𝑤(𝜆1)+𝑏𝑐
∗(𝜆1)𝐶+𝑏𝑝

∗ (𝜆1)𝑃]

[𝑎𝑤(𝜆1)+𝑎𝑐
∗(𝜆1)𝐶+𝑎𝑝

∗ (𝜆1)𝑃+𝑎𝑦
∗ (𝜆1)𝑌]

                                                                                   (4) 

 

𝑅𝑟𝑠(𝜆2) = 𝑅2 =
𝑐

𝑄

[0.5𝑏𝑏𝑤(𝜆2)+𝑏𝑐
∗(𝜆2)𝐶+𝑏𝑝

∗ (𝜆2)𝑃]

[𝑎𝑤(𝜆2)+𝑎𝑐
∗(𝜆2)𝐶+𝑎𝑝

∗ (𝜆2)𝑃+𝑎𝑦
∗ (𝜆2)𝑌]

                                                                                  (5) 

 

𝑅𝑟𝑠(𝜆3) = 𝑅3 =
𝑐

𝑄

[0.5𝑏𝑏𝑤(𝜆3)+𝑏𝑐
∗(𝜆3)𝐶+𝑏𝑝

∗ (𝜆3)𝑃]

[𝑎𝑤(𝜆3)+𝑎𝑐
∗(𝜆3)𝐶+𝑎𝑝

∗ (𝜆3)𝑃+𝑎𝑦
∗ (𝜆3)𝑌]

                                                                                  (6) 

                                                                                                               

where      𝑏𝑏𝑤(𝜆) = water backscattering coefficient 
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                𝑏𝑝
∗(𝜆) = sediment specific backscattering coefficient 

                𝑏𝑐
∗(𝜆) = chlorophyll specific backscattering coefficient 

               𝑎𝑐
∗(𝜆) = chlorophyll specific absorption coefficient 

                𝑎𝑤(𝜆) = pure water absorption coefficient 

                𝑎𝑦
∗ (𝜆) = yellow substance specific absorption coefficient 

                𝑎𝑝
∗ (𝜆) = sediment specific absorption coefficient. 

 

Moreover, bb(w)(λ)  is the water backscattering coefficient, and bb(p)
∗ (λ)  and bb(c)

∗ (λ)  are specific 

backscattering coefficients of sediment and chlorophyll, respectively. ac
∗(λ) is the chlorophyll-specific 

absorption coefficient, ap
∗ (λ) is the sediment-specific absorption coefficient, and aw (λ) is the pure water 

absorption coefficient,. P, C, and Y are suspended particles, the concentrations of chlorophyll, and yellow 

substance, respectively (Gallie & Murtha, 1992). 

3.4 Regression algorithm 

TSS concentration can be calculated by solving the three simultaneous equations (4), (5) and (6) to obtain 

the series of terms 𝑅1, 𝑅2 and 𝑅3 that is written as: 

 

P= 𝑒0 + 𝑒1𝑅1 + 𝑒2𝑅2 + 𝑒3𝑅3 + 𝑒4𝑅1𝑅2 + 𝑒5𝑅1𝑅3 + 𝑒6𝑅2𝑅3 + 𝑒7𝑅1
2 + 𝑒8𝑅2

2 + 𝑒9𝑅3
2                        (7) 

           

where the coefficients ej ( j= 0,1,2, …, ) are the functions related to the coefficients used in Equations (4)  

to (6), which are determined empirically from the multiple regression analysis. This equation is 

implemented to link reflectance values from the image bands to the observed TSS concentrations. 

3.5  Image Processing 

Raw images are corrected for distortions or degradations, due to the image acquisition process, by 

using a basic image processing technique. Radiometric and geometric corrections, masking and filtering 

are main components in the image processing (Albizua et al., 2012). In this study, PCI Geomatica digital 

image processing software (version 10.3) is used to carry out all image-processing tasks. The procedure 

shown in figure 4 is employed to extract reflectances from the raw ALOS image.  

 

3.5.1 Geometric correction 

 

To correct the raw ALOS image, image-to-image rectification was applied. Ground control points 

(GCPs) were determined by using a geometrically corrected (Système Pour l'Observation de la Terre 

(SPOT) satellite map as the reference geocoded image with root mean square error (RMSE) of less than 

0.5 pixels (Kabbara et al. 2008). The primary steps used were as follows: recording of ground control 

points (GCPs), computing the transformation matrix, and resampling of the image. We chose and 

recorded 25 GCPs acquired from various geometrical locations such as ground level sharp corners, road 

junctions, and so on. If GCPs were conveniently identifiable in both the raw image and the reference, 

they are selected.  

Next, the transformation matrix, which involves the coefficients for transforming the reference 

coordinate system to the input coordinate system, is used. Image rectification was conducted via first-

order polynomial transformation equations to obtain an acceptable root mean square error (RMSE). 

Ultimately, the image was re-sampled to measure the values for the rectified image. The nearest neighbor 

re-sampling was implemented since this approach utilizes only the original brightness of the pixels. 
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Sample locations were then identified on these geocoded images. The RMSE, acquired for geometric 

correction of the images, was less than 0.5 pixels, which confirmed the high accuracy of the geometric 

correction (Kabbara et al., 2008). 

 

 

 

Fig. 4. Satellite imagery processing workflow. 

 

3.5.2 Radiometric correction and extraction of reflectance data from ALOS images 

 

Radiometric correction is concerned with eliminating the errors related to sensor detectors. Two major 

radiometric effects on satellite data were revealed by Ahern et al. (1987): earth-sun distance correction 

and sun elevation correction. The earth-sun distance correction is conducted to normalize the distance 

between the earth and the sun during seasonal changes. The sun elevation correction accounts for the 

seasonal position of the sun relative to the earth and it is implemented based on the angle of the sun from 

the zenith. Therefore, this correction compensates for different sun angles at different acquisition dates. 

After masking cloud and land, the digital numbers (DN) or pixel values of each band at the sample 

stations, were extracted using PCI software with a window size of 3x3 median filter (Kloiber et al., 2002). 

Applying median filter reduces the noise from a single pixel, hence, makes the output image smoother 

(Kabbara et al., 2008; Ma & Dai, 2005). In converting DN to reflectance, raw DNs were converted to 

radiance and then to reflectance. Radiance is linearly related to DN (Nanni & Dematte, 2006; Schroeder 

et al., 2006). First, the extracted DN values were converted into radiance values by: 

 

         𝐿𝜆 = 𝑎 ∗ 𝐷𝑁 + 𝑏                                                                                                                                (8) 

 

where 𝑎 is the spectral band gain, 𝐿λ is spectral radiance at the sensor's aperture in (𝑊𝑚−2𝑠𝑟−1𝜇𝑚−1), 

and  𝑏 is the spectral band offset (bais). The gain and offset values are unique for each spectral band 

acquired by a particular sensor. Then, the signal in each band and at each pixel was converted to At-

Sensor Spectral Reflectance values using the following equation: 

 

          𝑅λ = 
𝜋𝐿λ𝑑2 

𝐸 𝑠𝑢𝑛λ cos (𝜃)
                                                                                                                               (9) 

 
Extracting reflectance 

 
Raw ALOS image 

 

 
Geometric correction 

 

 
Radiometric correction 

 

 
Masking land and cloud 

 

 
Filtering 
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where:       d = Earth–Sun distance in astronomical units (AU)        

             Rλ= Unit less planetary reflectance   

             E sunλ  = Mean solar exo-atmospheric irradiance (Wm−2μm−1) 

             θ = Solar zenith angle or (90- Sun Angle elevation) (°) 

             

 

Gains and biases used for the conversion of digital numbers to spectral radiance for ALOS AVNIR-2 

are presented in table 3. Earth-sun distance and sun angle elevation on 13 January 2008 and 18 January 

2010 are demonstrated in table 4. 

 

Table 3. Gains and biases used for the conversion of digital numbers to spectral radiance for ALOS AVNIR-2. 

BAND Physical gain Bias 
E sunλ 

(𝑾𝒎−𝟐𝝁𝒎−𝟏) 

1 (Blue) 0.5880 0 1943.3 

2 (Green) 0.5730 0 1813.7 

3 (Red) 0.5020 0 1562.3 

 

Table 4. Earth- sun distance and sun angle elevation. 

Date Earth-Sun distance (𝐀𝐔) 
Sun Angle Elevation 

(degree) 

13.01.2008 0.98354 53.37 

18.01.2010 0.98385 54.26 

 

 

The reflectance values for all of the data points in three visible bands (blue, green, and red) were 

collected.  Plots of suspended sediment concentrations versus the reflectance of the three visible bands 

were generated (Figure 5). As the TSS concentration increased, the response from each band also 

increased. Data points from the red band (band 3) were lower than those from the green band (band 2) 

and the blue band (band 1), both of which had shorter wavelength bands. These correlations indicate the 

effective relationship between the dependent variable, TSS, and the independent variables, reflectance of 

the bands. 

4. Data analysis and results 

4.1 Regression model development 

Statistical methods are the most commonly applied techniques in calculating correlations between TSS 

concentration and spectral data (Asadpour et al., 2012; Y. Zhou et al., 2004). A linear regression analysis 

was implemented to test the relationship between ALOS bands and TSS concentrations of the entire 

database using the combined data from both image dates for multi-date analysis. The extracted 

reflectance for three visible bands was regressed with their respective sea-truth data using the SPSS 19 

statistical analysis. A series of statistical models were developed and examined for specifying the best 

relation between measurements of TSS and reflectance of ALOS bands. Simple regression models 

between TSS and reflectance of individual bands (R1, R2, R3) were investigated. The regression results 
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were evaluated based on statistical parameters such as determination coefficients (R
2
) and root mean 

square error (RMSE) between the predicted and the measured TSS values and were utilized to 

demonstrate the importance of the regression model.  

 

    (a)                                                                                    (b) 

.       

                                       

                                          (c) 

. 

 

Fig. 5.  TSS concentration (mg/l) versus reflectance of individual visible bands for (a) the blue band, (b) the green band and (c) the 

red band. 

 

TSS = 1983.3(R1) - 

69.415 

                R
2 
= 

0.65 

         RMSE ≈ 7.1 

mg/l 

                 (10) 

TSS = 1056.2(R2)  + 

23.622  

                 R
2 
= 

0.73 

       RMSE ≈ 6.2 

mg/l 

                 (11) 

TSS =  1283.2(R3) + 

41.286 

                R
2 
= 

0.78 

       RMSE ≈ 5.7 

mg/l 

                 (12) 

where R1, R2 and R3 express reflectance of band1 (blue), band2 (green) and band3 (red), respectively, and 

TSS is total suspended sediment in mg/l.  

Furthermore, the multiple regression analysis was employed to calculate the relationship between the 

ALOS imagery data and TSS. The multiple regression analysis was conducted using reflectance 

combinations of the three visible ALOS bands (R1, R2, and R3). The selection of the best regression 

equation for measuring TSS is made by comparing the correlation coefficients among these model 

equations. The best model should have highest R
2
 and lowest RMSE to predict TSS from satellite 

imagery data. The weakest correlation was found in the simple regression models between reflectance of 
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single bands and TSS with ranged from 0.65 to 0.78, whereas the strongest correlation was obtained in a 

multiple regression model between reflectance combinations of the three visible bands and TSS with R
2 
= 

0.91. Thus a multiple regression model was selected to represent the best relation between the in-situ TSS 

and their corresponding reflectance values of ALOS bands. The highest correlation was reached in the 

non-linear relationship between the in-situ TSS and reflectance values of the bands. This trend coincides 

with the expression proposed by our algorithm in Equation (7). The derived algorithm generated a high 

correlation coefficient (R
2
 = 0.91) and a low RMSE value (RMSE ≈ 3.52 mg/l) between the predicted 

and the measured TSS values. Subsequently, the TSS algorithm was applied to produce water quality 

maps of the study area. The proposed algorithm was achieved for the study area is: 

 

TSS = -96677.9 (R1) +20329.17 (R2) +41093.55 (R3) +900667 (R1)
2
 -361734 (R2)

2
 -106222 (R3)

2
 -

95604.5 (R1 R2) -1065221 (R1 R3) +848150.2 (R2 R3) +2492.743        

 (R
2
 = 0.91    RMSE ≈ 3.52 mg/l)                                                                                                             (13) 

 

where R1, R2 and R3 are reflectance of band 1 (blue), band 2 (green) and band 3 (red), respectively. This 

multi-date regression model includes reflectance of bands, interaction of bands reflectance and bands 

reflectance square with a high correlation coefficient and less root mean square error. Hence, we can 

conclude that this developed algorithm is satisfactory and can be successfully used to predict TSS 

concentrations. The predicted TSS values were computed via the proposed algorithm and were then 

correlated with their corresponding sea data measurements (Figure 6). As illustrated in figure 6, the data 

points are distributed relatively close to the straight line, that is, y ≈ x. Therefore, the non-linear algorithm 

provides efficient agreements between in-situ TSS concentration and predicted TSS. 

 

 

 

Fig. 6. In-situ TSS data versus predicted TSS data using combined data points. 
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The TSS concentration maps, which were estimated by applying the developed equations on the entire 

water surface of the Langkawi Island coastal waters based on the ALOS satellite images, were acquired. 

The suggested algorithms in Equation (13) created accurate results with R
2
 =0.91 and RMSE ≈ 3.52 mg/l. 

The algorithm was applied to produce color-coded maps to define the range of pollution in the area. The 

maps were used for visual interpretation. The generated maps were filtered at 3 x 3 pixels that were 
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averaged to eliminate random noise. Figure 7 displays the TSS concentration maps of the coastal waters 

of Langkawi Island on 13 January 2008 and 18 January 2010.  

  

 

Fig. 7. TSS concentrations map created by using the new algorithm in the coastal waters of Langkawi Island on (a) 13 January 2008 

(b) 18 January 2010. 
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5. Discussion 

This study successfully used an efficient and cost-effective method in obtaining remote sensing data 

from the ALOS for remote sensing analysis. The approach and algorithm proposed in this study can 

resolve the challenges related to the conventional measurement of water quality. Besides, the application 

of the developed algorithm, by using the present data set, for mapping of TSS generated reliable and 

precise result. Therefore, the proposed algorithm was found to be a beneficial technique for water quality 

mapping of coastal water areas. 

In this research, the best-fit regression equation for TSS prediction was identified through the 

regression approach. The regression model proved that the equation can be feasibly employed to measure 

the TSS concentrations of the coastal waters of Langkawi Island despite the unavailability of in-situ data. 

The result also revealed that as TSS concentration grows, the response from each ALOS band also boosts. 

Similar characteristics were reported by other researchers who utilized remote sensing invisible channels 

for suspended sediment studies (Alashloo et al., 2013; Asadpour et al., 2012; H. Lim et al., 2010; 

Syahreza, San, et al., 2011). These correlations indicated the positive relationship between independent 

variables (reflectance of bands) and dependent variables (TSS). 

Comparison of the outcomes with other tested models shows that the extracted algorithm delivers the 

best predictive relationship. The highest correlation was obtained in the non-linear relationship between 

reflectance combinations of the three visible bands and in-situ TSS. Lim et al. (2008) and Schiebe et al. 

(1992) presented that the relationship between TSS and remote sensing data is not linear. 

The algorithm can be effectively implemented in predicting TSS with R
2
 = 0.91 and RMSE ≈ 3.52 

mg/l when using satellite data. The derived algorithms in Equation (13) led to accurate results and were 

utilized to produce color-coded maps for visual interpretation. Several interesting patterns in the maps 

could be observed (Figure 7). Useful spatial information on water quality distribution patterns of coastal 

waters within the study area can be achieved from this kind of maps. This information is vital for coastal 

zone management and environmental planning. The data can be employed to determine the locations of 

erosion and deposition areas and to provide key information for the management and environmental 

planning of the marine environment. 

The predicted TSS maps demonstrated higher concentrations of TSS in shallow water areas closer to 

the shoreline and the estuary of rivers. These areas are generally coastal environments with concentration 

values ranging from 100 mg/l to 150 mg/l or higher (red color). The highest water quality was observed 

in the deep clear water (shown in blue). Thus reflectance from TSS is more important in shorelines than 

that from signals coming from water far from the shore. As seen from the maps, the majority of the high 

values of TSS were concentrated in the southern part of the coastal waters of Langkawi Island because of 

urbanization. This finding indicated that the south is suffering from a much severe water quality problem 

than the north. The resultant concentration maps indicate that the concentration of TSS on13 January 

2008 is lower than the concentration of TSS on 18 January 2010. 

6. Conclusions 

This study revealed that ALOS satellite is a useful tool for water quality mapping in the coastal waters 

of Langkawi Island. The procedures were conducted by developing and implementing regression models 

to ALOS data for estimating TSS concentrations. In addition, this study proved that TSS mapping can be 

performed over the study area using remote sensing techniques. The results from the combined data of 

two ALOS images in different dates stated that the measured TSS firmly agreed with the in-situ data with 

high correlation coefficients and lower root mean square errors. In sum, the results indicated that ALOS 

imagery and regression analysis can be used efficiently in calculating TSS concentrations in the coastal 

waters of Langkawi Island, Malaysia. 
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